
Expansions, Decompositions, and

2-Variable Logic

Howard Straubing
Boston College

Conference dedicated to the scientific legacy of M.-P. Schützenberger

Deterministic Finite Automaton

A = (Q,⌃, q0, F)

w = �1 · · ·�n 2 ⌃⇤

w 7! q0�1 · · ·�n

= qw 2 Q

LA = {w 2 ⌃⇤ : q0w 2 F}
is a recognizable (= regular)
language

A = (Q,⌃, q0, F)

w = �1 · · ·�n 2 ⌃⇤

w 7! q0�1 · · ·�n

= qw 2 Q

DFA

LA = {w 2 ⌃⇤ : q0w 2 F}
is a recognizable (= regular)
language

Homomorphism into
finite monoid

� : ⌃⇤ ! M

X ✓ M
w 7! �(�1) · · ·�(�n)

= �(w) 2 M

LA = {w 2 ⌃⇤ : �(w) 2 X}
is a recognizable (= regular)
language

�

⌧

�, ⌧

Recognizes L = {�, ⌧}⇤⌧{�, ⌧}⇤
set of words that contain a ⌧

M = U1 = {0, 1}
X = {0}

�

⌧

�, ⌧

�(�) = 1,�(⌧) = 0

⇥ 1 0

1 1 0
0 0 0

Recognizes the same language.

Recognizes L = {�, ⌧}⇤⌧{�, ⌧}⇤
set of words that contain a ⌧

The Schützenberger Product

(1963-1966)

‘On finite monoids having only trivial subgroups’, Information and Control,

1965
(and at least four others from same era)

The Schützenberger Product

�
1,�1,�(�2 · · ·�n)

��
�(�1),�2,�(�3 · · ·�n)

�
· · ·

�
�(�1 · · ·�n�1),�n 1

�

2 (M ⇥ ⌃⇥M)⇤

� : ⌃

⇤ ! M homomorphism onto finite monoid

w = �1 · · ·�n
 7!

Y

w=u�v

(�(u),�,�(v)) =

The Schützenberger Product

�
1,�1,�(�2 · · ·�n)

��
�(�1),�2,�(�3 · · ·�n)

�
· · ·

�
�(�1 · · ·�n�1),�n 1

�

2 (M ⇥ ⌃⇥M)⇤

⇠
=

is a congruence of finite index on on ⌃

⇤.

Set w1
⇠
=

w2 if �(w1) = �(w2), and
 (w1) and (w2) have the same set of letters.

� : ⌃

⇤ ! M homomorphism onto finite monoid

w = �1 · · ·�n
 7!

Y

w=u�v

(�(u),�,�(v)) =

The Schützenberger Product

�
1,�1,�(�2 · · ·�n)

��
�(�1),�2,�(�3 · · ·�n)

�
· · ·

�
�(�1 · · ·�n�1),�n 1

�

2 (M ⇥ ⌃⇥M)⇤

⇠
=

is a congruence of finite index on on ⌃

⇤.

Set w1
⇠
=

w2 if �(w1) = �(w2), and
 (w1) and (w2) have the same set of letters.

� : ⌃

⇤ ! M homomorphism onto finite monoid

w = �1 · · ·�n
 7!

Y

w=u�v

(�(u),�,�(v)) =

⌃M ‘ = ’ ⌃

⇤/ ⇠
=

(more or less the Schützenberger product)

⌃� : ⌃

⇤ ! ⌃M projection homomorphism

Not exactly...

The Schützenberger product is

M1⌃M2 = M1 ⇥ P(M1 ⇥M2)⇥M2

where

(m1, X,m2)(n1, Y, n2) = (m1m2, Z, n1n2)

with

Z = {(m1s, t) : (s, t) 2 X} [{(s, tn2) : (s, t) 2 Y }

L1�L2 is recognized by the homomorphism

� 7! (�(�), {(1, 1)},�(�))

⌧ 7! (�(⌧), ;,�(⌧))

if ⌧ 6= �.

⌃� : ⌃

⇤ ! ⌃M is an expansion of � : ⌃

⇤ ! M.

(terminology due to Birget and Rhodes)

⌃M admits simple coordinates.

⌃M is close to M .

⌃M admits simple coordinates.

⌃M is close to M .

⌃�(w) = (factorizations of w,�(w))

If � : ⌃

⇤ ! M recognizes L1, L2 ✓ ⌃

⇤

then ⌃� recognizes L1�L2 for any � 2 ⌃.

⌃� : ⌃

⇤ ! ⌃M is an expansion of � : ⌃

⇤ ! M.

Every group in ⌃M is isomorphic to a group in M .

Consequence: If L ✓ ⌃

⇤
is built starting with ;,

and closing under boolean operations and

(L1, L2) 7! L1�L2 (i.e., L is star-free) then

L is recognized by a monoid M with no

nontrivial groups (aperiodic monoid).

(one direction of that famous theorem..)

Bilateral Transducers (‘bimachines’)

‘A remark on finite transducers’, Information and Control, 1961

Bilateral Transducers (‘bimachines’)

(q,�) 7! q�, (�, q0) 7! �q0 for q 2 Q, q0 2 Q0.

w = �1 · · ·�n
 7!

Y

w=u�v

(q0u,�, vq
0
0)

= (q0,�1,�2 · · ·�nq
0
0)(q0�1,�2,�3 · · ·�nq

0
0) · · · (q0�1 · · ·�n�1,�n, q

0
0)

2 (Q⇥ ⌃⇥Q0)⇤ = �⇤.

Q,Q0 left and right finite state sets.

Bilateral Transducers (‘bimachines’)

(q,�) 7! q�, (�, q0) 7! �q0 for q 2 Q, q0 2 Q0.

w = �1 · · ·�n
 7!

Y

w=u�v

(q0u,�, vq
0
0)

= (q0,�1,�2 · · ·�nq
0
0)(q0�1,�2,�3 · · ·�nq

0
0) · · · (q0�1 · · ·�n�1,�n, q

0
0)

2 (Q⇥ ⌃⇥Q0)⇤ = �⇤.

Q,Q0 left and right finite state sets.

(We should really map Q⇥ ⌃⇥Q0
to a separate output alphabet.)

� : ⌃⇤ ! M

w = �1 · · ·�n
 7!

Y

w=u�v

(�(u),�,�(v))

Bimachine transductions via finite monoids:

= (1,�1,�(�2 · · ·�n))(�(�1),�2,�(�3 · · ·�n)) · · · (�(�1 · · ·�n�1),�n, 1)

2 (M ⇥ ⌃⇥M)⇤

(Take M = M1 ⇥M2, where M1 is transition monoid of (Q,⌃),

M2 is (left) transition monoid of (Q0,⌃).)

Theorem. (Schützenberger (1961)) The composition of two bimachine

transductions is a bimachine transduction.

Homomorphisms
� : ⌃⇤ ! M
 : (M ⇥ ⌃⇥M)⇤ ! N

Composite transduction computed by block product N⇤M .

Theorem. (Schützenberger (1961)) The composition of two bimachine

transductions is a bimachine transduction.

Homomorphisms
� : ⌃⇤ ! M
 : (M ⇥ ⌃⇥M)⇤ ! N

Composite transduction computed by block product N⇤M .

(Block product formally introduced by Rhodes and Tilson much later,

but it is implicit in Schützenberger’s proof of this theorem.)

Block product. Don’t spend a lot of time trying to understand the definition!

N⇤M = NM⇥M ⇥M

with multiplication

(F1,m1) · (F2,m2) = (G,m1m2)

where

G(m,m0
) = F1(m,m2m

0
) · F2(mm1,m

0
).

If
 : �i 7! (Fi,�(�i),

then
w = �1 · · ·�n 7! (G,�(w)),

where

G(1, 1) =
nY

i=1

Fi(�(�1 · · ·�i�1),�(�i+1 · · ·�n)).

The Schützenberger Product

⌃M ‘ = ’ U1⇤M. (Recall U1 = {0, 1}.)

The Schützenberger Product

⌃M ‘ = ’ U1⇤M. (Recall U1 = {0, 1}.)

Well, not exactly, but close enough.

The two generate the same variety, and both

are equal to semidirect products of M with an

idempotent and commutative monoid on the left.

(Schützenberger: ‘boolean semidrect product’.)

If L ✓ ⌃

⇤
is built starting with ;, and closing under boolean operations and

(L1, L2) 7! L1�L2

(i.e., L is star-free) then L is recognized by a monoid M with no nontrivial

groups (aperiodic monoid).

Conversely, if L is recognized by a finite aperiodic monoid, then L is star-free.

‘Next to Kleene’s Theorem, probably the most important result dealing with

recognizable sets.’

–Samuel Eilenberg

The other half of that famous theorem.

This yields a decomposition:

Every finite aperiodic monoid M divides
(is a quotient of a submonoid of)

U1⇤ · · · (U1⇤(U1⇤U1)) · · ·)

Sequential function computed by monoid.

Compare work of Krohn, Rhodes (1962-1965)

w = �1 · · ·�n
 7!

nY

w=u�v

(�(u),�)

= (1,�1)(�(�1),�2) · · · (�(�1 · · ·�n�1),�n) 2 (M ⇥ ⌃)⇤

Composition computed by wreath product N �M.

Every aperiodic monoid divides

U2 � U2 � · · ·U2

where U2 = {1, a, b} with b = U2b, a = U2a

The block product (in contrast to the wreath product)

is not associative.

What if we turn it inside-out?

What do we get from

(· · · ((U1⇤U1)⇤U1) · · ·)⇤U1 ?

‘Le Produit de Concatenation Non-ambigu’ (1976)

⌃ = {�, ⌧}, L = ⌃

⇤��⌃⇤

(words without two consecutive

occurrences of �.)

M(L) = minimum

recognizing monoid

(syntactic monoid)

Boxes are classes of elements

that generate same ideal

(J -classes)

Idempotents in red.

1

0 = �2

� = �⌧�⌧�

= ⌧�⌧
�⌧⌧ = ⌧2

1

⌧�

L = �+⌧⌃⇤�⌧+
�⌧

�

⌧�⌧

�⌧�⌧�⌧�

⌧

concatenation is unambiguous

(Schützenberger, 1976) Variety DA of finite monoids.

Every J -class with an idempotent

contains only idempotents.

L is recognized by a monoid in DA if and only if

L is built from letters, �

⇤
for � ✓ ⌃,

by closing under boolean operations and unambiguous

concatenation L1, L2 7! L1L2.

The block product (in contrast to the wreath product)

is not associative.

What if we turn it inside-out?

What do we get from

(· · · ((U1⇤U1)⇤U1) · · ·)⇤U1 ?

Answer: DA (Straubing and Thérien, 2002)

Connections with Logic

Connections with Logic

First-order descriptions of regular languages

⌃⇤�⌃⇤: 9x�(x)

⌃⇤��⌃⇤: ¬9x9y
⇥
�(x) ^ �(y) ^ x < y

^8z(z  x _ y  z)
⇤

L ✓ ⌃

⇤
is star-free if and only if L is first-order definable

L,L0 ✓ ⌃⇤ defined by 1, 2

L�L

0 defined by 9x(�(x) ^ <x

1 ^ >x

2)

where

<x

is obtained from by globally replacing

9t� by 9t(t < x ^ �)
and

8t� by 8t(t < x ! �)

What can you define with two variables?

(Immerman, Kozen) Every first-order sentence over <
is equivalent to one using only three variables.

9x
⇥
⌧(x) ^ 8y(y < x ! �(y))

^ 9y(y < x)
^ 9y{x < y ^ ⌧(y)

^8x(y < x ! �(y))
^9x(y < x)}

⇤

�+⌧⌃⇤⌧�+:

(Thérien-Wilke) L is definable by a two-variable sentence if and only if

it is recognized by a monoid in DA.

How this follows from our block-product decomposition:

L recognized by M⇤U1:

�1 · · ·�n 7! b1 · · · bn 2 {0, 1}⇤

7! (1, b1, b2 · · · bn) · · · (b1 · · · bn�1, bn, 1) 2 (U1 ⇥ {0, 1}⇥ U1)⇤ = �⇤

! M

Accepted if and only if result satisfies a two-variable sentence over �.

Replace each atomic formula �(x), � 2 � of by

(supposing � = (0, 1, 1)):

9y(y < x ^ 0(y)) ^ 1(x) ^ 8y(x < y ! 1(y)).

The result is still a two-variable sentence.

Variations on a Theme:

(Krebs, Straubing, 2012): Algebraic characterization of quantifier

alternation depth in two-variable logic.

L has alternation depth  k if and only if recognized by

(· · · (M⇤M) · · ·⇤M)⇤M)

where M has 1-element J -classes.

Used to prove computability of alternation depth for 2-variable logic.

(Independently proved by Kufleitner and Weil.)

Variations on a Theme:

What can you define if you sneak betweenness

back into 2-variable logic?

New relation symbols:

�(x, y)

means

9z(x < z < y ^ �(z))

(Krebs, Lodaya, Pandya, Straubing, 2016):

(Partial) algebraic characterization of this logic.

