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Enumerative combinatorics and generating functions

e Let W be a set of combinatorial objects equipped with an integer size
| - |, and assume that for each n, the set

{weW:|w|=n},

is finite. Let c(n) be its cardinality.

e The generating function of the objects of W, counted by the size, is

C(t) =) c(mt"= > "

n>0 wew

Also called “generating function of the sequence c(n)".



Example: the Dyck language

e Let D be the Dyck language on {a, b}, generated by the context-free
grammar

D — e, D — aDbD.

Then D = {e, ab, abab, aabb, . ..} consists of words in which every prefix
contains at least as many a's as b's, and the whole word exactly as many
a's as b's. Graphically:

a baaabbbabaaabbabyhd



Example: the Dyck language

e Let D be the Dyck language on {a, b}, generated by the context-free
grammar

D — e, D — aDbD.

Then D = {e, ab, abab, aabb, . ..} consists of words in which every prefix
contains at least as many a's as b's, and the whole word exactly as many
a'sas b's.

e The generating function of Dyck words, counted by their length
(number of letters) is:

D()= Yt = L (”’)ﬂnzﬂ.

n 2t2

This is an algebraic series.



Definition. A formal power series C(t) with coefficients in Q is algebraic if
there exists a non-zero bivariate polynomial P with coefficients in Q such
that

P(t,C(t)) =0.



Algebraic series: the multivariate case

Definition. A formal power series C(t) with coefficients in Q is algebraic if
there exists a non-zero bivariate polynomial P with coefficients in Q such

that
P(t,C(t)) =0.

Multi-variate generating functions: for objects equipped with several
parameters p1, ..., Pk:

Cxty .-y Xk t) Z xpl(w : x,fk(w)tl""',
wew

algebraicity means that
P(x1, ..., xk, t,C(x1, ..., xk; t)) =0

for some non-zero polynomial P with coefficients in Q.



The generating function of words w of a non-ambiguous context-free
language WV on the alphabet A, counted by the length |w| (and possibly
by the number |w|, of occurrences of each letter a € A), is algebraic.

Any non-ambiguous grammar generating W gives a system of algebraic
equations defining the associated GF. For instance, for the Dyck language,

D — e, D — aDbD
gives
D(t) = 1+ t°D(t)*.

These series are even N-algebraic, that is, solutions of positive systems.



e A polynomial system
Ci = Pi(t,Co,Cy,...,Ck),  fori€[0,4]

is proper if P;(0,...,0) =0 (no constant term) and
[Ci]Pi(t, Co,...,Ck) =0 (no linear term C;).

e A proper system has a unique power series solution (Co(t), ..., Ck(t))
with C,‘(O) =0.
Example:

Co =2t + C3 + 4tCy,
Cy =tCy+ CoC%.



N-algebraic series

e A polynomial system
Ci = Pi(t,Co, Cyq, ..., Cp), for i € [0, k]
is proper if P;(0,...,0) =0 (no constant term) and
[Cj]Pi(t, Co,...,Ck) =0 (no linear term C;).
e A proper system has a unique power series solution (Co(t), ..., Ck(t))

with C,(O) =0.

e A series C(t) is N-algebraic if it reads ¢y + Co(t) where ¢y € N and
(Co(t),...,Ck(t)) is the power series solution of a proper system with
coefficients in N.

Example: C(t) =4 + Co(t) with
Co =2t + C3 + 4tCy,
Ci =tCo+ CoC%



The generating function of words w of a non-ambiguous context-free
language WV on the alphabet A, counted by the length |w| (and possibly
by the number |w|, of occurrences of each letter a € A), is N-algebraic.

and vice-versa! (apart from the constant term)



If a class of objects O has an algebraic generating function, one should
try to explain this algebraicity via a size-preserving bijection between the
objects of O and the words of a (non-ambiguous) context-free language.

The algebraic structure of words can be transfered into an algebraic
structure on the objects themselves.



A basic example: plane trees

Plane trees with n edges are in bijection with Dyck words of length 2n:
/\ /\
AN

| VAVARRR VA
The context-free grammar

D — e, D — aDbD

corresponds to the following recursive description of trees:



Growing up in the Schiitzenberger methodology

Directed convex polygons 3D directed animals

t4

Vi-at2 algebraic degree 12
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Growing up in the Schiitzenberger methodology

Directed convex polygons 3D directed animals
‘ : W
\/1th & algebraic degree 12

In this talk: discuss the algebraicity of several enumeration problems, and
their possible algebraic structure.
Recast them in a larger class of problems and series!






o Catalan numbers:

e Kreweras numbers:

K0 = rE T ()

L (5/6)u(1/2),
6(n) =16"55 73, (2),

where (a), = a(a+1)---(a+n—1)= r(r"’(”;)") is the ascending factorial.

o Gessel numbers:

What do they have in common?



The ratio of two consecutive terms is rational in n:

C(n+1) _22n—|—1
C(n) " n+2’

K(n+1) _(3n+1)(3n+2)
K(n) — ~ (n+2)(2n+3)’

G(n+1)  (2n+1)(5n+6)
G(n)  (n+2)3n+5)’




The associated generating functions are algebraic

e Catalan generating function C = C(t):
C=1+1tC?
e Kreweras generating function K = K(t):
K =1— 54t + 72tK — 16tK? — 64t2K3,

e Gessel generating function G = G(t):

G =1 — 48t 4 576t + 256t> 4 4t(15 — 228t + 128t2)G
+ 2t(—5 + 156t — 312t + 256t%)G2 + 9t%(—5 + 56t + 64t%)G>
+0t3(—13 + 28t + 32t2)G* — 189+*G® — 189t°G°
—108t°G’ — 27t"G®.



e Catalan C(n) = number of words w on {a, b} with 2n letters such that
|w|s = |w|p and for every prefix u of w, |u|s > |ulp.

/\
/ \




They count lattice paths (or Dyck-like words)

e Catalan C(n) = number of words w on {a, b} with 2n letters such that
|w|, = |w|p and for every prefix u of w, |ul; > |ulp.

e Kreweras K(n) = number of words w on {a, b, c} with 3n letters such

that |w|, = |w|p = |w|c and for every prefix u of w, |u|, > |u|p and
lula > |ulc. [Kreweras 65]




They count lattice paths (or Dyck-like words)

e Catalan C(n) = number of words w on {a, b} with 2n letters such that
|w|, = |w|p and for every prefix u of w, |ul; > |ulp.

e Kreweras K(n) = number of words w on {a, b, c} with 3n letters such
that |w|, = |w|p = |w|c and for every prefix u of w, |u|, > |u|p and
lula > |ulc. [Kreweras 65]

e Gessel G(n) = number of words w on {a, b, ¢, d} with 4n letters such
that |w|, = |w|p = |w|c = |w|q and for every prefix u of w, |u|, > |u|p
and |ul, + |ulc > |ulp+|ulg. [Kauers et al. 09]

a a a
b ¢
b c b



Dyck walks [Whitworth 1878, Bertrand 1887, André 1887]



Dyck walks [Whitworth 1878, Bertrand 1887, André 1887]

Kreweras walks
o first proof [Kreweras 65]
e simplifications [Niederhausen 80, 83|, another approach [Gessel 86|
o first (and only) bijective proof [Bernardi 07]



Some walks are (much) easier to count than others

Dyck walks [Whitworth 1878, Bertrand 1887, André 1887]

Kreweras walks
o first proof [Kreweras 65]
e simplifications [Niederhausen 80, 83], another approach [Gessel 86|
e first (and only) bijective proof [Bernardi 07]

Gessel walks

@ conjecture [Gessel ~ 00]

e first proof for the numbers G(n) by computer algebra [Kauers,
Koutschan, Zeilberger 09]

o algebraicity [Bostan, Kauers 10] (computer algebra)

@ “Human" proofs: [Bostan, Raschel 13(a)] (via complex analysis and
elliptic functions) and [mbm 15(a)] (power series only).

@ No bijective explanation.






Quadratic recurrence relation:
=Y Ci)CG). o) =1
i+j=n—1
Algebraic equation:

1—+/1—4t

2t

C(t)=1+1tC(t)> = C((t)=




Quadratic recurrence relation:

C(n= Y C(Hcw), C(0)=1

i+j=n—1
Algebraic equation:

1—+/1—4t

C(t)=1+1tC(t)> = C(t)= T



Quadratic recurrence relation:
=Y Ci)CG). o) =1
i+j=n—1
Algebraic equation:

1—+/1—4t

2t

C(t)=1+1tC(t)> = C((t)=




Proposition: for any finite step set S C Z, the set of walks going from 0
to 0 on the half-line N and taking their steps in S has an algebraic
recursive description, obtained by first/last return decompositions.
[Labelle, Yeh 90, Labelle 93, Duchon 00]



Paths on a half-line are “context-free"

Proposition: for any finite step set S C Z, the set of walks going from 0
to 0 on the half-line N and taking their steps in S has an algebraic
recursive description, obtained by first/last return decompositions.
[Labelle, Yeh 90, Labelle 93, Duchon 00]

Example: for S = {3, -2},

Doo = 1+ CooDoyp Doo = C20Dop
Coo = aDa1b Cio = Do1b
D21 = D20Co,1+ D1,0Co0 Coo = Di1b

i

Dio = Ci,0Doy0 D11 = Doo+D1,0Co1



Paths on a half-line are “context-free"

Proposition: for any finite step set S C Z, the set of walks going from 0
to 0 on the half-line N and taking their steps in S has an algebraic
recursive description, obtained by first/last return decompositions.
[Labelle, Yeh 90, Labelle 93, Duchon 00]

Example: for S = {3, -2},

Doo = 1+ CooDoyp Doo = C20Dop
aDo1b Cio = Do1b
D2,0Co,1 + D1,0Co,0 Coo = Di1b

C1,0Doy Dii1 = Doo+D10Coa




Let s(i,/; n) be the number of n-step walks on the square lattice that
start at (0,0) but never return to the non-positive x-axis, and end at
(7,/). Then:

s(0,1;2n+ 1) = 4"C(n),
s(1,0;2n+1) = C(2n+ 1),

s(—1,1;2n) = % C(2n).

oolh

[mbm, Schaeffer 00(a)]

Bijective proof for s(1,0;2n + 1) [Barcucci, Pergola, Pinzani, Rinaldi 01]






Proposition: the GF of Kreweras numbers is NOT N-algebraic, hence
these walks do NOT have a positive algebraic recursive description.



Proposition: the GF of Kreweras numbers is NOT N-algebraic, hence
these walks do NOT have a positive algebraic recursive description.

Proof:
4n <3n> V3

K(n) = (hr D@t 1)\ n = 27002,

~ayr



A negative result

Proposition: the GF of Kreweras numbers is NOT N-algebraic, hence
these walks do NOT have a positive algebraic recursive description.

Proof:
i 4n 3n \/§ n—/
K(”)—ml)(znm(n) 2z

Theorem [Banderier, Drmota 15]: If the n-th coefficient a(n) of an
N-algebraic series satisfies

a(n) ~ cu"n,
thena:—z— 1, with k > 1ora=J —1withme {1,2,3,...} and
k > 0. In particular, & > —3/2.



A negative result

Proposition: the GF of Kreweras numbers is NOT N-algebraic, hence
these walks do NOT have a positive algebraic recursive description.

Proof:
4n (3n) V3

K(n) = E ~ m27”n_5/2.

However, K(t) is the difference of two N-algebraic series of radius 1/27:
K(t) = A(t) — 2tA(t)*

A(t) =1+4tA(t)> =D 2n4jr - <3nn> t".

n>0

with




A negative result

Proposition: the GF of Kreweras numbers is NOT N-algebraic, hence
these walks do NOT have a positive algebraic recursive description.

Proof:
4n (3n) V3

_ ~ n,_—5/2
et \n) “amT "

K(n)

However, K(t) is the difference of two N-algebraic series of radius 1/27:
K(t) = A(t) — 2tA(t)*

A(t) =1+4tA(t)> =D 2n4jr - <3nn> t".

n>0

with

Combinatorial explanation of the algebraic system:
@ a bijection with certain triangulations [Bernardi 07]...
@ counted bijectively in [Poulalhon, Schaeffer 03].
e Many differences of N-algebraic series in map enumeration [Cori,
Vauquelin 80] = Gilles Schaeffer's talk



L (5/6)u(1/2),
G =16" 553 (@)

a
d%c
b



A negative result

Proposition: the GF of Gessel numbers is NOT N-algebraic, hence these
walks do NOT have a positive algebraic recursive description.

Proof:
N 7 HeU M
Gm =16 (5/3)n(2)n o

Theorem [Banderier, Drmota 15] If the n-th coefficient a(n) of an
N-algebraic series satisfies

a(n) ~ cp"n”,
then a:—%k—l, with k > 1or o= % — 1 with me {1,2,3,...} and
k > 0. In particular, & > —3/2.



A negative result

Proposition: the GF of Gessel numbers is NOT N-algebraic, hence these
walks do NOT have a positive algebraic recursive description.
Proof: (5/6)1(1/2)
G(n) = 16" L2012 160 /3
(5/3)n(2)n

Theorem [Banderier, Drmota 15] If the n-th coefficient a(n) of an
N-algebraic series satisfies

a(n) ~ cp"n“,

thena:—%k—l, with k > 1or o= % — 1 with me {1,2,3,...} and
k > 0. In particular, & > —3/2.

Questions
@ Is G(t) is the difference of two N-algebraic series of radius 1/167
@ Can the coefficients of an N-algebraic series involve non-dyadic
exponents in their asymptotic expansion?



From other recursive descriptions,
and the corresponding (non-algebraic) functional equations






Kreweras walks: a step by step construction

COST: consider Kreweras walks ending anywhere in the quadrant, and
count them by the length and coordinates (i, /) of the endpoint:

th Zt\w\lw)

w walk




Kreweras walks: a step by step construction

COST: consider Kreweras walks ending anywhere in the quadrant, and
count them by the Iength and coordinates (',j) of the endpoint:

w walk
Then
(K(x,yit) = K(x,y) = 1+ txy + X + 7)K(x, ) — t3K(0, y) — t7K(x,0) |

JEERISN

{

withx =1/xand y =1/y.

An equation with two catalytic variables [Zeilberger].



Kreweras walks: a step by step construction

COST: consider Kreweras walks ending anywhere in the quadrant, and
count them by the Iength and coordinates (',j) of the endpoint:

w walk
Then
(K(x,yit) = K(x,y) = 1+ txy + X + 7)K(x, ) — t3K(0, y) — t7K(x,0) |

JEERISN

{

withx =1/xand y =1/y.

An equation with two catalytic variables [Zeilberger].

The series K(x, y; t) is still algebraic [Gessel 86, mbm 02].



Gessel walks: a step by step construction

COST: consider Gessel walks ending anywhere in the quadrant, and count
them by the length and coordinates (i, ) of the endpoint:

G(x,y; t) = Zt‘w‘

w walk

v Z




Gessel walks: a step by step construction

COST: consider Gessel walks ending anywhere in the quadrant, and count
them by the length and coordinates (i, ) of the endpoint:

G(x,y; t) = Zt‘w‘

w walk

Then

G(x,y;t) = G(x,y) = 14+t(x + xy + x + X¥)G(x,y)—tx(1 + ¥)G(0, y)
— txyG(x,0) 4+ txyG(0,0),
with x =1/xand y =1/y.

Ao . QL

P

And... the series G(x, y; t) is still algebraic [Bostan, Kauers 10].



COST: consider square lattice walks avoiding the non-positive x-axis and
ending anywhere, and count them by the length and coordinates (i, ) of
the endpoint:

w walk

1,




Walks in the slit plane: a step by step construction

COST: consider square lattice walks avoiding the non-positive x-axis and
ending anywhere, and count them by the length and coordinates (i, ) of
the endpoint:

Seayit)= Y eIy,

w walk

Then
S(x,y;t) =S(x,y) = 14+ t(x + X+ y +y)S(x, y) — 2tS1(x)

where .
Si(x) = s(i, 1;n)xt".

i<0

St e ol

< < D

And... the series S(x. v: t) is still aleebraic [mbm. Schaeffer 00(a)].



COST: consider walks with +1 steps on the non-negative half-line, and
count them by the length and height i of the endpoint:

D(x;t) = Y X,

w walk



Step by step for Dyck paths!

COST: consider walks with +1 steps on the non-negative half-line, and
count them by the length and height i of the endpoint:

D(X; t): Z t‘Wlxi(W).

w walk
Then
D(x;t) = D(x) = 1+ t(x + x)D(x) — txD(0).

An equation with one catalytic variable.

The series D(x; t) is still algebraic (and even N-algebraic).



Kreweras
K(x,y) =1+ t(xy + X + ¥)K(x,y) — txK(0, y) — tyK(x,0)

Gessel

G(x,y) =1+ t(x+xy +x + xy)G(x,y) — tx(1 + y)G(0, y)
— t%7G(x,0) + tx7G(0, 0)

Slit plane

S(x,y) =1+ t(x+x+y+y)S(x,y) —2tS1(x)

Why are these three series algebraic?



D(x) = 1+ t(x + X)D(x) — txD(0)

= D(x) = 1+ 2xtD(x) + t (x*t + t — x) D(x)?.



The equation (recall x = 1/x):

D(x) = 1+ t(x + X)D(x) — txD(0) (1)



The equation (recall x = 1/x):

D(x) = 1+ t(x + X)D(x) — txD(0) (1)

@ generate the first N coefficients of
Dx;t) =1+ tx+t2(1+x3) +--- (N = 10 will suffice)



The equation (recall x = 1/x):
D(x) =1+ t(x + x)D(x) — txD(0) (1)
@ generate the first N coefficients of

Dx;t) =1+ tx+t2(1+x3) +--- (N = 10 will suffice)
@ guess a (conjectured) algebraic equation for D [Maple, GFUN]:

D(x) = 1 +2xtD(x) + t (x*t + t — x) D(x)*.



Proof # 1: Guess and check
The equation (recall x = 1/x):
D(x) =1+ t(x + x)D(x) — txD(0) (1)
@ generate the first N coefficients of

Dx;t) =1+ tx+t2(1+x3) +--- (N = 10 will suffice)
@ guess a (conjectured) algebraic equation for D [Maple, GFUN]:

D(x) = 1 +2xtD(x) + t (x*t + t — x) D(x)*.

o one solution D(x) is a series in t with polynomial coefficients in x (so
that D(0) is well-defined)



Proof # 1: Guess and check
The equation (recall x = 1/x):
D(x) =1+ t(x + x)D(x) — txD(0) (1)
@ generate the first N coefficients of

Dx;t) =1+ tx+t2(1+x3) +--- (N = 10 will suffice)
@ guess a (conjectured) algebraic equation for D [Maple, GFUN]:

D(x) = 1 +2xtD(x) + t (x*t + t — x) D(x)*.

o one solution D(x) is a series in t with polynomial coefficients in x (so
that D(0) is well-defined)

e check (1) for this conjectured value D(x).



Proof # 1: Guess and check
The equation (recall x = 1/x):
D(x) =1+ t(x + x)D(x) — txD(0) (1)
@ generate the first N coefficients of

Dx;t) =1+ tx+t2(1+x3) +--- (N = 10 will suffice)
@ guess a (conjectured) algebraic equation for D [Maple, GFUN]:

D(x) = 1 +2xtD(x) + t (x*t + t — x) D(x)*.

o one solution D(x) is a series in t with polynomial coefficients in x (so
that D(0) is well-defined)

e check (1) for this conjectured value D(x).

Applies (in principle) to many equations!



Proof # 1: Guess and check
The equation (recall x = 1/x):
D(x) =1+ t(x + x)D(x) — txD(0) (1)
@ generate the first N coefficients of

Dx;t) =1+ tx+t2(1+x3) +--- (N = 10 will suffice)
@ guess a (conjectured) algebraic equation for D [Maple, GFUN]:

D(x) = 1 +2xtD(x) + t (x*t + t — x) D(x)*.

o one solution D(x) is a series in t with polynomial coefficients in x (so
that D(0) is well-defined)

e check (1) for this conjectured value D(x).

Applies (in principle) to many equations!
= One solution of Kreweras' and Gessel's problems [Bostan, Kauers 10]



Proof # 2: the kernel method

The equation:
(1 —t(x+x))D(x) =1 — txD(0)

@ The kernel (1 — t(x + X)), when solved for x, has two roots X and

1/X, with
x = lzvizar 'zlt_4t2 =t+ 2+ O(t).
@ Replacing x by X cancels the |.h.s., leaving
D(0) = 5

[Knuth] The Art of Computer programming, Vol. 1 Chap. 2.

Applies to any problem of walks on the half-line N [Petkovsek 98].



The equation:
(1 —t(x +x))xD(x) = x — tD(0)



The equation:
(1 —t(x +x))xD(x) = x — tD(0)

@ Replacing x by 1/x := X leaves the kernel unchanged:
(1—t(x+x))xD(x) = x — tD(0)



The equation:
(1 —t(x +x))xD(x) = x — tD(0)

@ Replacing x by 1/x := X leaves the kernel unchanged:
(1—t(x+x))xD(x) = x — tD(0)

o Take the difference, and divide by the kernel:
X —X

XD(X) — )_(D()_() = m



Proof # 3: the algebraic kernel method

The equation:
(1= t(x+x))xD(x) = x — tD(0)

@ Replacing x by 1/x := x leaves the kernel unchanged:
(1 —t(x+x))xD(x) = x — tD(0)

@ Take the difference, and divide by the kernel:
X —X

xD(x) — xD(x) = m

@ Partial fraction expansion in x:

xD(x) — XD(X) = é (1 _XXX 1 fxx)




Proof # 3: the algebraic kernel method

The equation:
(1= t(x+x))xD(x) = x — tD(0)

Replacing x by 1/x := X leaves the kernel unchanged:
(1 —t(x+x))xD(x) = x — tD(0)

@ Take the difference, and divide by the kernel:
X —X

xD(x) — xD(x) = m

Partial fraction expansion in x:

xD(x) — XD(X) = é (1 _XXX 1 fxx)

Pick up positive powers of x:

X X
t1—xX'

xD(x) =



Two dimensional problems

The above ideas (guess and check/ kernel method/ normal forms... and
more) are used in the solutions of our 2D problems:

® -+ 0—0
o
© ©
9 0—O0
0—O
©
O
—

and much morel



@O0 —0—0

The whole story



Take a starting point pg in Z9, a (finite) step set S € Z? and a cone C.

What is the number c(n) of n-step walks starting at pyg, taking their
steps in S and contained in C?

For i = (i1,...,iy) € C, what is the number c(i; n) of such walks
that end at i?

Generating function:

C(x;t) = Z c(i; m)xit - -xc",d t"

in



If S ¢ Z9 is finite and C = RY, then C(x; t) is rational:

- 1
1 |S|t

c(n) = 15"

More generally:




If S c Z9 is finite and C is a rational half-space, then C(x; t) is algebraic,
given by an explicit system of polynomial equations.

[Labelle, Yeh 90, Labelle 93, Duchon 00, mbm-Petkovsek 00, Banderier &

Flajolet 02, ...]




2D walks in a convex cone = walks in the first quadrant

e The quarter plane, with py = (0,0),
and steps S C Z2: J

Q(x,y; t) = Z q(i,ji mxiyith = 2

ij,n>0 i




e The formal power series C(t) is algebraic (over Q(t)) if it satisfies a
(non-trivial) polynomial equation:

P(t,C(t)) =0.



A hierarchy of formal power series

e The formal power series C(t) is algebraic (over Q(t)) if it satisfies a
(non-trivial) polynomial equation:

P(t,C(t)) =0.

e The formal power series C(t) is D-finite (holonomic) if it satisfies a
(non-trivial) linear differential equation with polynomial coefficients:

Pe(t)CH(t) + -+ + Po(t)C(t) = 0.

o Nice and effective closure properties + asymptotics of the coefficients



A hierarchy of formal power series

e The formal power series C(t) is algebraic (over Q(t)) if it satisfies a
(non-trivial) polynomial equation:

P(t,C(t)) =0.

e The formal power series C(t) is D-finite (holonomic) if it satisfies a
(non-trivial) linear differential equation with polynomial coefficients:

Pe(t)CH(t) + -+ + Po(t)C(t) = 0.

o Nice and effective closure properties + asymptotics of the coefficients
o Extension to several variables (D-finite: one DE per variable)



Quadrant walks with small steps: classification

e S C{-1,0,1}2\ {(0,0)} = 28 = 256 step sets (or: models)

e However, some models are equivalent to a half-space problem (hence
algebraic) and/or to another model (diagonal symmetry).

e One is left with 79 interesting distinct models [mbm-Mishna 09].
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The series Q(x, y; t) is D-finite if and only if a certain group G associated

with S is finite.
It is algebraic iff, in addition, the orbit sum is zero.

[mbm-Mishna 10], [Bostan-Kauers 10] D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite

= Classification of the corresponding functional equations, e.g.

(1—t(x+x+y+7)Qxy:t)=1—txQ(0,y; t) — tyQ(x,0; t)



The group of the model

To a step set S, associate the step polynomial:
Sx,y)= Y x'y.
(if)es

The group is generated by two birational transformations of (x, y) that
leave S(x, y) unchanged.

Example. For the square lattice,
1 1 _ _
Sy) = Hxtyt o =Xtxty+y

and
d:(x,y)—(x,¥) and V:(x,y)— (x,¥).

These two involutions generate a group of order 4.



quadrant models: 79
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D-finite algebraic




@ Quadrant walks with larger steps [Fayolle, Raschel 15|, [Bostan,
mbm, Melczer 167]
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14(a), Bacher, Kauers, Yatchak 15(a)]



More steps, more cones

e Quadrant walks with larger steps [Fayolle, Raschel 15], [Bostan,
mbm, Melczer 167]

@ 3D walks in the non-negative octant [Bostan, mbm, Kauers, Melczer
14(a), Bacher, Kauers, Yatchak 15(a)]

@ Non-convex cones: 2D walks avoiding the negative quadrant [mbm
15(a)], [Mustapha 16].




More steps, more cones

e Quadrant walks with larger steps [Fayolle, Raschel 15], [Bostan,
mbm, Melczer 167]

@ 3D walks in the non-negative octant [Bostan, mbm, Kauers, Melczer
14(a), Bacher, Kauers, Yatchak 15(a)]

@ Non-convex cones: 2D walks avoiding the negative quadrant [mbm
15(a)], [Mustapha 16].

models: 74
|

| \

|Gl<oo: 23 |G|=00: 51
IEEEE— |

0S#0: 19 0S=0: 3+ 1 Not D-finite

D-finite? algebraic?



@ Many combinatorial classes with an algebraic GF are not
“context-free” (not N-algebraic). A better understanding is needed!
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e D-finite series are nice (combinatorial interpretations [Kotek,
Makowsky], [Massazza], [Pak]...)



Final comments

@ Many combinatorial classes with an algebraic GF are not
“context-free” (not N-algebraic). A better understanding is needed!

@ |Is there a combinatorial class with a rational, but not N-rational, GF?

e D-finite series are nice (combinatorial interpretations [Kotek,
Makowsky], [Massazza], [Pak]...)

o (Very) hard algebraic problems: those for which we do not know any
recursive description.




