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																																												Topics:	
	
1)  Threshold	Networks.	

2)		Some	applicaOons:	bootstrap	percolaOon,	Hopfield	model,		
					RegulaOon	Networks,	Schelling’s		SegregaOon	Model	…	
	
3)  UpdaOng	schemes	and	dynamics	over	undirected	graphs.	

4)		CharacterizaOon	of	the	convergence	to	fixed	points		
					or	cycles.	
	
5)		Related	decision	problems	and	computaOonal	complexity.	
.	



Threshold	networks	
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No se puede mostrar la imagen. Puede que su equipo no tenga suficiente memoria para abrir la imagen o que ésta esté dañada. Reinicie el equipo y, a continuación, abra el archivo de nuevo. Si sigue apareciendo la x roja, puede que tenga que borrar la imagen e insertarla de nuevo.
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Block-	sequenOal	updates:	
	
	
Consider	a	parOOon																											of	the	set		{1,	…,	n}	
	
We	update		the	blocks	one	by	one:	
	
To	update	the	k-th	block	we	consider	the	new	state	of	every	sites	belong	to	previous	blocks.	
	

€ 

{I1,...,Ip}

Parallel	or	synchronous	update:	only	one	block.	Every	site	is	updated	at	
	the	same	Ome.	
	
SequenOal	update:	n-blocks	of	cardinality	one:	sites	are	updated	one	by	
	one	in	a	prescribed	order.		

The	dynamics	



We	consider	only	symmetric	integral	threshold	networks.		
i.e.	W	being	a	symmetric	matrix	with	integral	entries.		

W=W(G)	is	the	symmetric	incidence	matrix	of	a	weighted	graph	G=(V,E)	
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		Example	of	dynamics	for	symmetric	threshold	networks	

We	consider	a	4x4	ladce	with	periodic	condiOons,	
nearest	interacOons,	states	0	or	1,	and	the	local	majority	funcOon:	
	
If	the	number	of	ones	is	bigger	or	equal	to	the	number	of	zeros	then	
the	site	takes	the	value	1	

€ 

x'ij =1

€ 

iff

€ 

xi−1, j + xi+1, j + xi, j−1 + xi, j+1 ≥ 2



Dynamics:	two	cycles	and	fixed	points;	different	behavior	for	different	updates	



Some	applicaOons.	



J.	J.	Hopfield,	"Neural	networks	and	physical	systems	with	emergent	
collecOve	computaOonal	abiliOes",	Proceedings	of	the	NaOonal	
Academy	of	Sciences	of	the	USA,	vol.	79	no.	8	pp.	2554–2558,	April	
1982	

																								
																			Hopfield	Threshold	Networks	
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i, j ∈{1,...,n}€ 

ε k ∈{−1,1}np	vectors	to	be	memorized			

The	matrix	weight:		

Thresholds	=		0	

W	is	symmetric	

Dynamics:		sequenOal	or	asynchronous	update.	



Arabidopsis	regulaOon	threshold	network	

BioinformaOcs.	1999	Jul-Aug;15(7-8):593-606.	
GeneOc	control	of	flower	morphogenesis	in	Arabidopsis	thaliana:		
a	logical	analysis.	Mendoza	L,	Thieffry	D,	Alvarez-Buylla	ER.	

	

Demongeot	J,	G.	E,	Morvan	M,	Noual	M,	Sené	S	(2010)	ApracOon	
Basins	as	Gauges	of	Robustness		
against	Boundary	CondiOons	in	Biological	Complex	Systems.	PLoS	ONE	
5(8):	e11793.	doi:10.1371	



Parallel	
dynamics	
	of	Yeast1	

Parallel	
dynamics	
	of	yeast2	

DecontrucOon	and	Dynamical	robustness	
of	regulatory	networks:	applicaOon	to	the	Yeast	
cell	cycle	networks.	E.G,	M.	Montalva	and	G.		Ruz,	
Bull	Math	Biol	(2013)	75,	939-966	

Yeast	cell-cycle	
Threshold	Networks	



The	Schelling	segregaOon	model	

•  An	 individual	 is	unhappy	 if	 there	are	
more	than		k		individuals	on	the	other	
state	in	its	neighborhood	

	

Thomas	C.	Schelling	(1969)	

N.	Goles-Domic,	E.G.,	S.	Rica,	Dynamics	and	Complexity	
Of	the	Schelling	segregaOon	model,	Phys.	Rev	E,	vol1E83	
Pp1-13,2011	

At	each	step,	one	lists	the	unhappy	individuals	
of	both		
species,	and	then	randomly	
	one	exchanges	two	individuals	of	opposite	
value.	
	

Two	dimensional	ladce	with	Moore’s	neighborhood,	states	{-1,1}	



Phase	diagram	



				Bootstrap	PercolaOon	

												Given	a	finite	undirected	graph	G=(V,E)	
	
										and	an	iniOal	configuraOon	of	0’s	and	1’s	
	
Consider	the	strict	majority	funcOon	operaOng	at	each	node	
	
					What	is	the	relaOonship	between	the	graph	and	the	
							proporOons	of	1’s	such	that		updated	in	parallel		
																				every	node		will	become	1?			

E.	G.,	P.	Montealegre-Barba,	I.	Todinca,	The	complexity	of	the	bootstraping	
	percolaOon	and	related	problems,	TheoreOcal	Comp.	Science,	to	appear	(2013).	
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Apractors	on	threshold	networks	
								over	undirected	graphs	



For	arbitrary	matrices	W	previous	model	may	accept,		
Iterated	in	parallel	or	sequenOally,	long	period	cycles		
and	transients	…..	
	But	when	W	is	symmetric	the	network	converges	to	
	fixed	point	or	two	periodic	cycles	(parallel	update),		
	
And,	if	diag(W)≥0	to	fixed	point	(sequenOal	update).	
	

E.G,	J.	Olivos,	Periodic	behaviour	of	generalized	threshold	funcOons,		
Discrete	mathemaOcs,	vol	30,	pp	187-189,	1980.	

E.G.,	Fixed	Point	behavior	of	threshold	funcOons	on	a	finite	set,	SIAM	Journal	on		
Alg.		And	Discrete	Methods,	vol	3(4),	pp	2554-2558,	1982.	



Further	for	W	symmetric	the	network	admits	an	energy:	
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If		diag	(W)	≥	0,	SequenOal	update:	

Parallel	update:	



Which	implies	that:	
	
1)	for	the	parallel	updaOng	the	apractors	are	only	
Fixed	points	or	two	cycles.	
	
2)	For	the	sequenOal	updaOng	and	diag(W)≥0	there	are	only	fixed	points.	
	
3)	In	both	situaOons	transients	are	bounded		by				α⎪⎪W⎪⎪x⎪⎪b⎪⎪	

€ 

ΔE = E(x(t)) − E(x(t −1) < 0 If	and	only	if	
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x(t) ≠ x(t − 2)

And	for	the	sequenOal	iteraOon		
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ΔE = E(x ') − E(x) < 0
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" x ≠ xiff	



The	most	general	dynamical	result:	
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s = {I1,...,Ip}
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W (Ik )

€ 

k ∈{1,..., p}

Consider	the	block-sequenOal	scheme	

The	symmetrical	threshold	network				T=(W,	b,	s)	

Let		 the	sub-matrix	associated	to	the	k-th	block	

If	for	every		 is	non-negaOve-definite	

€ 

W (Ik )

The	network	converges	to	fixed	points	

E.	G.,	F.	Fogelman-Soulie,	D.	Pellegrin,	Decreasing	energy	funcOons	as	a	tool	

For	studying	threshold	networks,	Discrete	Applied	MathemaOcs,	vol	12,	pp261-277,	1985.	



€ 

ΔE = − (x 'i
i∈I k

∑ − xi)( wij
j=1

n

∑ x j − bi) −
1
2

(x'i
i∈I k

∑ − xi) (x j '
i∈I k

∑ − x j )

€ 

ΔE = δ i
i∈I k

∑ −
1
2
y tW (Ik )y

€ 

y = (x '−x)∈{−1,0,1}n

€ 

δ i = −(x 'i −xi)( wij
j=1

n

∑ x j − bi)

																																																									�													x’≠x	 there	exists	

€ 

i∈{1,..,n}

€ 

δ i ≤ −
1
2

€ 
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where	

such	that		

Then		

€ 

x'= (xI1 ,...,xI k−1 ,.x 'I k ,xI k+1
,...,xI p )	The	update	of	the	k-th	block:	

(since	W	is	an	integral	matrix)	

Sketch	of	the	proof:	



We	will	suppose	now	that	every	matrix	is	the	incidence	matrix	of			
an	undirected	graph	G=(V,E),	so	their	entries	belong	to	the	set	{0,1}		
	W=W(G)=																	eventually	with	loops		
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(wij )

€ 

(wii =1)

€ 

α(G) = −n − k + 2m − 4 p

n		=	|V|,		
m	=|E|,		(without	loops)	
K		=	the	number	of	loops,	
P		=	the	minimum	number	of	edges	to	remove		
						such	that	the	sub-graph	is	biparOte.	
	

Consider	the	quanOty:	
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|V|	=	4	
	
|E|	=	6	

k	=	2	

p	=	2	

1	

3	4	

2	

Maximum	biparOte	sub-graph	

€ 

α(G) = −4 − 2 + 2 × 6 − 4 × 2 = −2 < 0

Example	



	
	

Theorem-1	

Consider			an	undirected	graph	G=(V,E),	W=W(G),	b		a	threshold	vector.	

and	the	network	updated	in	parallel,	N=	(W,	b,	{1,	…,n})	
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α(G') < 0

€ 

α(G') ≥ 0

For	any	G’	sub-graph	of	G		(by	deleOng	verOces)		

€ 

⇒ Fixed	points	for	any		
threshold	vector	

€ 

⇒ There	exists	a	threshold	vector		
such	that	two	cycles	appears	
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f3(x) = H(x1 + x2 + x4 −
3
2
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f4 (x) = H(x1 + x3 + x4 −
3
2
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€ 

α(G) = −5 + 2 × 5 − 4 =1≥ 0 € 

(x1,x2,x3,x4 ) = (1,0,1,0)↔ (0,1,0,1)

Two-cycle	

There	exists	a	sub-graph	with		

€ 

α(G) ≥ 0

€ 

(1,0)↔ (0,1)
Two-cycle	
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Parallel	update	
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Parallel	updaOng	on	two	families	of	graphs	

BiparOte	graphs	
(k=0)with	n	loops	(diag	
(W)=(1,…1))	

n>m	

€ 

α(Kn ) < 0�	�	
			(G	is	a	forest)	

Only	fixed	points	

Complete	graphs	with	n	loops	
	
In	this	situaOon,	the	minimum	number	of	edges	to	remove	to	obtain	a	biparOte	graph			

	
	
									
	

€ 

p = 2q(q −1)
p = 2q2

for		n=2q	
	
for		n=2q+1	
	
	

€ 

α(Kn ) < 0 	Complete	graphs	updated	in		
Parallel	converges	to	fixed	points	�	

€ 

α(G) = −2n + 2m



Fixed	points	 Two-Cycles	

3≤k≤4	 0≤k≤2	

1≤k≤4	 k=0	

0≤k≤4	

3≤k≤4	 0≤k≤2	

1≤k≤4	 k=0	

�	

k=number		
of	loops	

n=4	

Parallel	UpdaOng	



Connected	
graphs	for	
n=5	with	5	
loops.		
	

€ 

α(G)
2

= −n +m − 2p

In	red	the	edges	to	be		
removed	for	a	maximum	
biparOte	graphs	



Theorem-II:	apractors	for	every	block-sequenOal	update.	
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s = {I1,...,Ip}

€ 

k ∈{1,..., p}

Consider	the	block-sequenOal	scheme	

The	symmetrical	threshold	network				T=(W,	b,	s)	

Let		 the	graph	associated	to	the	k-th	block	
			

fixed	points	
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α(G') < 0
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α(G') ≥ 0
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G(Ik )
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k ∈{1,..., p}	and	

€ 

€ 
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∃ cycles	



Corollary	

€ 

s = {I1,...,Ip}the	block-sequenOal	scheme				
Consider	an	undirected	graph	G=(V,E)	with	every	loop	and	the		
		

€ 

| Ik | ≤	3	

€ 

k ∈{1,..., p}

€ 

∀ �	 Fixed	points	

Otherwise,	there	exist		graphs	and	threshold		
vectors		such	that	cycles	appear	



ParOOon	size	=1	directly	from	the	fact	that	diag(W)≥0	

ParOOon	size	=	2	

€ 

α(G) = −4

€ 

α(G) = −2

€ 

α(G) = −2

ParOOon	size=	3	

Sketch	of	the	proof:	



Cycles	for	block-sequenOal	updates	
Every	undirected	graph	with	at	least	two	connected	
	verOces	without	loops	admits	cycles		

		Every	site	{3,	..,n}	
	is	constant	at	state	0	

1	 2	

€ 

f1(x) = H(x2 + x j
j∈V1 \{2}
∑ −

1
2
)

f2(x) = H(x1 + x j
j∈V2 \{1}
∑ −

1
2
)

  

€ 

(x1,x2,
! x ) = (1,0,

! 
0 )↔ (0,1,

! 
0 )

€ 

α(G({1,2},{(1,2)})) = −2 + 2 ×1 = 0

Two	cycle	for	any	parOOon		

€ 

τ = {{1,2},I2,...,Ip}



1	

1’	

2	

2’	

3	 4	 5	 6	 7	 8	

3’	 4’	 5’	 6’	 7’	 8’	

2	

2’	

3	 4	

3’	 4’	 ’	 Local	majority	at		
				each	vertex	

€ 

f3(x) = H(x2 + x3' + x4 −
3
2
)

f3' (x) = H(x2' + x3 + x4' −
3
2
)

staircase	

Non-Polynomial	Cycles	



0	 1	0	 0	 0	 0	

1	 1	 1	 1	0	 1	

0	 1	0	 0	 1	 0	

1	 1	 1	 0	0	 1	

0	 0	0	 0	 1	 0	

1	 1	 1	 0	1	 1	

Local	Majority	

1	
0	

Travel	to		
The	right	

Updated		
verOces	

X	
X’	 =	



1	0	 0	 0	 0	 0	 0	 0	

0	1	 1	 1	 1	 1	 1	 1	

0	1	 1	 0	 0	 0	 0	 0	

1	0	 0	 1	 1	 1	 1	 1	

€ 

τ = {{1,1'},{n,n'},{n −1,(n −1)'},...{3,3'},{2,2'}}

X(0)	

X(1)	

Block-SequenOal	updaOng	

Cycle	of	period	T=n-1	



Union	of		the	first	l	prime	number’s	staircases	of	size	

€ 

p1 +1 = 3;p2 +1 = 4;p3 +1 = 6, p4 +1 = 8,...., pl +1

So		by	considering	the	global	parOOon		
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τ = τk
k=1

l

∪

The	period	of	the	network	is	

€ 

T ≥ pk
k=1

l

∏ = eΩ |V (G )| log|V (G )|( )

Same	arguments	can	be	done	for	the	transient	Ome.	



	
	
The	class	P:	problems	which	me	can	solve	in	a	serial	computer	in	polynomial	Ome	
	
The	class	NC:	problems	which	can	be	solved	in	a	parallel	machine	(	say	a	PRAM)	in		
Poly-logarithmic	Ome	by	using	a	polynomial	number	of	processors	

	
A	candidate	to	be	intrinsically	serial	is	to	compute	the	truth	value	of	a	circuit	(CVP):	we	
Have	to	do	that	layer	by	layer	…..	Without		surprise	CVP	is	P-Complete..	It	is	also	not	difficult		
to	prove	that	the	monotone	(	only	AND	and	OR	gates)	circuit	problem	remains	P-Complete.	
	

ComputaOonal	Complexity	of	some	threshold	networks	



				Bootstrap	PercolaOon	

												Given	a	finite	undirected	graph	G=(V,E)	
	
										and	an	iniOal	configuraOon	of	0’s	and	1’s	
	
Consider	the	strict	majority	funcOon	operaOng	at	each	node	
	
					What	is	the	relaOonship	between	the	graph	and	the	
							proporOons	of	1’s	such	that		iterated	in	parallel		
																				every	node		will	become	1?			
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Maji(x) =1⇔ x j >
1
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xi = 0If			

0																otherwise	
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Vi = { j ∈V /(i, j)∈ E}
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xi =1

€ 

xi =1 Remains	constant	at	1	



																										Decision	problem	
	
	
PRE:	given	an	iniOal	configuraOon	and	a		
specific	node	at	value	0.	Does	there	exist	T>0		
such	that	this	node	becomes	1?	
	



Theorem		(P.		Montealegre,	I.	Todinca,		E.G	(2011))	

	
	Given	a	family	of	undirected	graph	G:		
		
		If	the	maximum	degree	≥	5,	PER		is	P	complete.	
	
			Else	(Maximum	degree	≤4)		PER	belongs	to	NC	
	



Clearly	PER	belongs	to	P,	because	in	almost	O(n)	
	steps	the	dynamics	reaches	the	steady	state.	
	
	
	
	
	
			The	proof	of	P-Completeness	consist	to	simulate	monotone	
										circuits	inside	the	strict	majority	dynamics.	
	



1	

1	

DIODE	



InformaOon	only	
flows	to	the	right	
	



1	 1	

OR	gate	

And	Gate	
	

Diode	arc	



For	the	case	maximun	degree	≤	4	one	may	
reduce	the	problem	to	compute	connected	
and	biconnected	components	in	the	graph,	
which	one	may	do	in	a	PRAM	in							

€ 

O((logn)2)
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1	

0	

0	

0	 0	

0	 0	 0	 0	 0	 0	 0	 0	

0	

0	 0	0	

0	

0	1	 1	

1	

1	

1	
1	

1	

1	

1	

1	

1	

0	

1	1	

Decision	site	

Alliances	

Max	degree	≤	4	

Its	verOces	never	change	



The	Complexity	of	the	majority	vote	
	rule	for	planar	graphs	



We	consider	the	similar	decision	problem	PRE	

This	problem	has	been	studied	by	C.	Moore	for	d-dimensional	regular	
																															ladces	with	nearest	interacOons	

Von	Neumann	neighborhood		
																					in	2D	

Nearest	neighborhood	
												In	3D	

	PRE	is	P-Complete	for	d	≥	3	
open	for	d	=	2	
(C.	Moore)	



	
	

For	planar	graphs	PRE	is	P-Complete	
	

(P.	Montealegre-Barba,	E:G,	2012)		

	



PRE	is	in	P	
Majority	is	a	parOcular	case	of	a	threshold	network:	
	

Since	G	is	undirected	W	is	a	nxn	symmetric	matrix	and	the	threshold:	

€ 

bi =
1
2
(|Vi |+1)€ 

bi =
1
2
|Vi |

€ 

€ 

Odd	neighborhood	

Even	neighborhood	
€ 

F(x) = H(Wx − b)

The	parallel	dynamic	is	driven	by	

€ 

E(x(t)) = − xi
i=1

n

∑ (t) wij
j=1

n

∑ x j (t −1) + bi(xi
i=1

n

∑ (t) + xi(t −1))

Which	is	strictly	decreasing	and	bounded		

€ 

o(n2)

So	PER	is	in	P	



wire	 Duplicate	a	signal	

diode	

=	

GADGETS	FOR	CIRCUITS	



AND-gate	

OR-gate	



The	cross-over	gadget	

diode	

(traffic	light)	



Cross-over	from	
										a	to	e	



Consider	a	decision	problem	slightly	different		
than	PRE	taking	Into	account	the	updaOng	scheme		
over	majority	funcOons:	
	
		

		

	
PRE(S):	given	an	iniOal	configuraOon	and	a		

specific	node	at	value	0	and	an	updaOng	scheme	S.		
Does	there	exist	T>0		such	that	this	vertex	becomes	1	

when	the	updaOng	scheme	S	is	applied?	
	



	PRE(S)	is	NP-Hard	for		
block-sequenOal	updaOng	schemes.	

(E.G,	P.	Montealegre-Barba,2013)	

This	result	is	a	direct	consequence	from	the	fact		that	block-	sequenOal	
schemes	on	the	majority	admit	non-polynomial	cycles.		



The	proof		is	a	reducOon		
of	3-SAT	to	PER(S).	

Variables	of	3-SAT:			

€ 

xk€ 

qk

€ 

q'k
-----	 -----	

€ 

qk

€ 

q'k

1	

1’	

2	

2’	

1	

1’	

2	

2’	€ 

x k

€ 

xk �	

€ 

qk = pk +1 The	k-th	prime	number	

Cycle		with	period	
	

€ 

T = pk

€ 

τ = {{1,1'},{2#2'},...,{qk,q'k }}
ParOOon:	



At	every	step	we	will	simulaOng	a	different	true	assignment	of	the	variables	
	
	

There	will	be	3	layers	in	the	network:		the	firs	are	the	gadgets	simulaOng	variables,		

The	second:	we	simulate	every	clause	by	joining	three	different	variables	
with	a	node	which	simulates	the	OR	funcOon.		
	
The	third	layer:	we	joint	every	OR	to	a	vertex	simulaOng	the	AND	funcOon.	
	
.	
	
	
	



Gray=1;	White=0	

		

€ 

xi

€ 

xi =1⇔ t = api

x i =1⇔ t ≠ api
€ 

pi = 3

Each	variable	is	1	for	any	mulOple		
of	the	gadget’s	period	



Variable	3			

Variable	6	 Variable	1	

€ 

(x1∨ x3 ∨ x 6)

	
=	1	

€ 

p3 +1

€ 

p3 +1

€ 

p6 +1

€ 

p6 +1

€ 

p1 +1

€ 

p1 +1



1) every	two	parOOon	in	the	first	layer.	
2) Every	couple	of	variables.	

3)			Every	“clause”	
4)			The	AND	vertex	.	

UpdaOng	Scheme.	



Recently	we	proved	thatThe	block-sequenOal		
majority		PredicOon	is	also	PSPACE-COMPLETE	

PSPACE-completeness	of	majority	automata	networks	
				E.	G.,	Pedro	Montealegre	,	Ville	Salo,		Ilkka	Törmä	
			TheoreOcal	Computer	Science	609	(2016)	118–128.		
	



	
PRE	for	bootstrap	percolaOon:	
P-Complete	for	degree	≥	5.	

Belongs	to	NC		for	degree	≤	4.		
In	a	2d	ladce	belongs	to	NC	

							For	the	majority	funcOon:	
PRE	is	P-complete	even	for	planar	graphs	

SOll	open:	complexity	for	a	2D	ladce	

For	the	Majority	FuncOon	PRE(S)	is	NP-HARD	

Summary	



		Gracias	!!!			


