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The dynamics

Block- sequential updates:

Consider a partition {[1,,,,,Ip} of the set {1, ..., n}

Parallel or synchronous update: only one block. Every site is updated at
the same time.

Sequential update: n-blocks of cardinality one: sites are updated one by
one in a prescribed order.
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4x4 lattice with periodic conditions,
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sequential or asynchronous update.
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Fig. 2 The fission yeast
cell-cycle threshold Boolean
netwoek, Using the sume
configuration as (Davidich and
Bornholdt 2008), the green/ealid

{b)

. ., Fig. 7 (a) State transition graph for Yeasts, without Starr and SKX, esing the pamallel epdating sches
t cell | L T e (b) State transition graph for the complese Yeart], using the sarallel wpdating scheme. The fwelve 1
St cell-CcycCle N circles represent the fixed point states, the three blue circles represent the states that belong to the liz

eshold Networks

Parallel
= dynamics
of yeast2

Fig. 10 The bodding yeast eell-cycle threshold Boolean setwaork. Using the same configuration s (Li
et al. 2002), the green/solid edges represent positive weights (activitions), the redidashed edges represent
sepative weights (mbiabitory). The yellow/Solid loops represent sell-dogradation




al is unhappy if there are
k individuals on the other
s neighborhood

, one lists the unhappy individuals

then randomly
ges two individuals of opposite

N. Goles-Domic, E.G., S. Rica, Dynamics and Complexity
Of the Schelling segregation model, Phys. Rev E, vol1E83
Pp1-13,2011
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Bootstrap Percolation

Given a finite undirected graph G=(V,E)
and an initial configuration of 0’'s and 1’s
Consider the strict majority function operating at each node
What is the relationship between the graph and the

proportions of 1’s such that updated in parallel
every node will become 17

E. G., P. Montealegre-Barba, |. Todinca, The complexity of the bootstraping
percolation and related problems, Theoretical Comp. Science, to appear (2013).
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For arbitrary matrices W previous model may accept,
Iterated in parallel or sequentially, long period cycles
and transients .....

But when W is symmetric the network converges to
fixed point or two periodic cycles (parallel update),

And, if diag(W)=0 to fixed point (sequential update).

E.G, J. Olivos, Periodic behaviour of generalized threshold functions,
Discrete mathematics, vol 30, pp 187-189, 1980.

E.G., Fixed Point behavior of threshold functions on a finite set, SIAM Journal on
Alg. And Discrete Methods, vol 3(4), pp 2554-2558, 1982.
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Union of the first | prime number’s staircases of size

p+1=3p,+1=4;p,+1=6,p, +1=8,....,p, +1

I
So by considering the global partition T = UTk
k=1

The period of the network is T= Hpk = eg(‘/IV(G)”OgW(G)')

Same arguments can be done for the transient time.



ems which me can solve in a serial computer in

problems which can be solved in a parallel machine ( ¢
ic time by using a polynomial number of processors

intrinsically serial is to compute the truth value of a cir
er by layer ..... Without surprise CVP is P-Complete..
notone ( only AND and OR gates) circuit problem




Bootstrap Percolation

Given a finite undirected graph G=(V,E)
and an initial configuration of 0’'s and 1’s
Consider the strict majority function operating at each node
What is the relationship between the graph and the

proportions of 1’s such that iterated in parallel
every node will become 17
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Theorem
Given a family of undirected graph G:
If the maximum degree =2 5, PER is P complete.

Else (Maximum degree <4) PER belongs to NC



Clearly PER belongs to P, because in almost O(n)
steps the dynamics reaches the steady state.

The proof of P-Completeness consist to simulate monotone
circuits inside the strict majority dynamics.
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ar graphs PRE is P-

(P. Montealegre-Barba, E:G, 2012)




PREIsIn P

Majority is a particular case of a threshold network:

F(x)=HWx -b)

Since G is undirected W is a nxn symmetric matrix and the threshold:

. —

. % 1 v, | Odd neighborhood

b. = l(| V. I+1) Even neighborhood
l 2 l

The parallel dynamic is driven by
E(x(1) = - Y, x,(t) Y w,x (1 =D+ ¥ b,(x,(t) + x,(t = 1))
i=1 j=1 i=1
Which is strictly decreasing and bounded 0(n2)

SoPERisinP
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S): given an initial configuration
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PRE(S) is NP-Hard for
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(E.G, P. Montealegre-Barba,2013)
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n the network: the firs are the gadgets s
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two partition in the fir
Every couple of variables

3) Every “clause”
4) The AND vertex .




proved thatThe bloc
Prediction is also PSPACE-

PSPACE-completeness of majority automata networks
E. G., Pedro Montealegre, Ville Salo, Ilkka T6rma
Theoretical Computer Science 609 (2016) 118-128.




r bootstrap percolatic
-Complete for degree > 5.
Belongs to NC for degree < 4.
In a 2d lattice belongs to NC

For the majority function:
E is P-complete even for planar graph:

the Majority Function PRE(S) is NF
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