
Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

An enduring trail of language characterizations via
homomorphism

Stefano Crespi Reghizzi
and Pierluigi San Pietro

DEIB - Politecnico di Milano

stefano.crespireghizzi@polimi.it

Conf. dedicated to the scientific legacy of M. P.
Schützenberger, Bordeaux, March 2016

1 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Schützenberger and Chomsky and their Representation
Theorem

2 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Outline: Chomsky-Schützenberger theorem CST

Parentheses, brackets and parenthetical constructs occur as a
syntactic constituent in natural language, math, animal
behavior; foremost, in logical formulas and computer
languages.

Walter von Dyck defined pure parenthetical languages as
congruence classes of words

Noam Chomsky’s phrase-structure grammars, of which type 2
(Context-Free) is the most successful, generate all sorts of
tree-like syntactic constructs, including Dyck languages

His “representation theorem” with Schützenberger [1962],
CST : CF languages coincide with the languages obtained
from a Dyck language by first intersecting with a regular
(finite-state) language that acts as filter, then transliterating
or deleting each parenthesis.

3 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Outline: developments and descendants of CST

CST

3. Other homo-
morphic characteri-
zations inspired by
CST.

2. Generaliza-
tions to other
language fam-
ilies based on
generalised Dyck
languages.

1. Refinements of
CST for CF fam-
ily - Application

4 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Parentheses in mathematical notation

Parentheses have appeared in algebraic writing in the XV-XVI
century. Erasmus of Rotterdam calls them lunulae.

Earlier and until the XVIII century, overline vinculum had
been used for grouping literals into a term:

aa+ bb m instead of
(

aa+ bb
)m

Abstracting from the contents of parenthesized expressions,

Walter von Dyck’s (1856-1934) name has been
given to the formal language every computer science student
knows.

5 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Parenthetical constructs in artificial languages

All programming languages have parenthetical constructs,
perhaps exaggeratedly so in Algol 68, where open/closed
brackets have palindromic codes:

begin . . . end, do . . . od, if . . .fi, case . . . esac

J. McCarthy [1958] LISP language uses only one type of
parentheses, but plenty of them to the disappontment of
programmers who frequently forget some or add too many:

(if nil
(list 1 2 ”foo”)
(list 3 4 ”bar”)))

Many web documents are in the XML notation, which
encloses each field between specific tags:
< /TITLE > . . . < /TITLE >

6 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Parenthetical structures in human languages

Natural language sentences rarely exhibit deeply nested structures
although they are grammatically correct, e.g. :

CLAUSE

schläftRelCLAUSE

liebtRelCLAUSE

sieht

das die Katze füttert

RelCLAUSEdie das Kind

der die Frau

der Man

Inner clauses are variously delimited by words acting as opening /
closing tags. Here relative pronouns open and verbs close.
A long-standing debate among linguists: what are the essential
features of a parenthetical?

7 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Dyck’s language as congruence class

The alphabet Σ is bipartite into open-closed brackets:
(,), [,], {, }, . . .
(Algebra denotes brackets as xi , x̄i)

In computer science, the Dyck language with k ≥ 1 bracket
pairs, Dk , is such that the brackets are well-balanced, in the
following sense.

Pair deletion rule

Dk is the congruence class of all words such that repeated
deletions of an adjacent symbol pair, such as

[]
, reduce the word

to the empty one, ε:

[()[]]() ⇒ [()[]]() = [()]() ⇒ [()]() ⇒ []() ⇒ () = ε

The equivalence xi x̄i ∼ ε generates the congruence.

8 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Context-Free grammars, push-down machine

1956 Noam Chomsky invented
the type 2 or CF grammars
made by rewriting rules, later
renamed by computer scientists
BNF grammars. He studied the
first algorithm to recognize if a
word is “grammatical”.

The algorithm is a special Turing machine called push-down
automaton PDA, with a finite-state RAM memory and an
unbounded “push-down stack” memory (Last-In-First-Out)

Language families generated by C.F. grammars and recognized
by non-deterministic PDAs coincide.

9 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Grammars, push-downs and Dyck languages

Chomsky’s Context-Free grammar of Dyck language:

S →
(

S
)

S a phrase is the concatenation of a bracketed

S →
[

S
]

S phrase and a phrase;

S → ε a phrase is the empty word;

Word membership/parsing problem: input word, is a Dyck phrase?

Deterministic push-down machine recognizes Dyck words:

On reading (or [, push stack symbol A) or A];

On reading), if A) is on top of stack, pop, i.e., remove top
symbol;

At the end, recognize the word if stack empty.

10 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

The idea of Chomsky and Schützenberger [1962]

A CF language is typified by various constructs: lists of items,
ternary structures if . . . then . . . else . . ., and also well-nested
structures begin . . . end

But Dyck purely consists of nested and concatenated brackets.
Can the ∞ variety of constructs be obtained, starting from
Dyck and

constraining the brackets that are adjacent
transliterating each bracket to some character of the language
alphabet? Yes!

Every CF grammar is a combination of

local constraints on well-formedness expressible as a
finite-state language, and

global constraints expressing well-nestedness of some
elements.

11 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Dyck language: the seed of every CF language

The alphabets are: Σ for lang. L and ∆ for lang. Dyck.

Chomsky Schützenberger Theorem, CST

L is context-free if, and only if

∃ Dyck language D, ∃ regular language R

∃ alphabetic transliteration τ from ∆ to Σ such that

L = τ (D ∩ R)

First, lang. R acts as filter to remove useless strings from D.
Then transliteration (homomorphism) maps a bracket on a
different symbol of Σ or nothing.

12 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

CST Example - Secondary school

In secondary schools 3 layers of parentheses admitted.
Consider such language L, for brevity without curly braces:

From outermost to innermost: curly, square , round

bad: (() []) good: [() ()] []

Filter by forbidding adjacencies: ([,)[, , and also ((and [[if
nesting of round-round and square-square are excluded.

This veto is easily
expressed by a
regular language

R = Σ∗ · ([·Σ∗

︸ ︷︷ ︸

strings without ([

∪ Σ∗·](·Σ∗

L = D2 ∩ R Transliteration is not needed in this case since the
alphabets of D2 and L coincide and all brackets are preserved.

13 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

CST Example - My phone contacts

The same Dyck language D2 (alphabet ∆ = { (,), [,] }, with a
different filter and transliteration, generates the language L of my
phone contacts:

[() ()] [()]
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ . . .

name
︷︸︸︷

Ada

ph. no.
︷︸︸︷

2399 33567 Bob 6605 . . .

Filter R vetoes the adjacent pairs: ((, ([, [[,](

Transliteration τ is :

symbol τ

[name

(ph. no.

] and) null

14 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Chomsky & Schützenberger presentation i

15 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

“ An alternative characterization of families

of CF languages” I

Proposition 1 [now known as Y. Medvedev Theor. but
Chomsky gives credit for it to Schütz.]

For any regular event [now language] B on alphabet Σ we can find
a standard regular event [now Strictly Locally Testable lang. of
degree 2] A on alphabet ∆ and a homomorphism [letter-to-letter
transliteration] h : ∆ → Σ such that B = h(A).

The immediate proof is suggested by the example:

16 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

“ An alternative characterization of families

of CF languages” II

B = (aa)+

0start 1 2
a

a

a

A = set of words over ∆ = {〈0, 1, a〉, 〈1, 2, a〉, 〈2, 1, a〉} s.t.:
start with 〈0, 1, a〉, end with 〈1, 2, a〉, and only contain the
pairs 〈0, 1, a〉 〈1, 2, a〉, 〈1, 2, a〉 〈2, 1, a〉, 〈2, 1, a〉 〈1, 2, a〉 as
substrings.

Such languages specified by a sliding window of width 2 are
2-Strictly Locally Testable

Homomorphism: h(x) = a for all x ∈ ∆.

17 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

“An alternative characterization of families

of CF languages”- C.S.T. I

They say:“We can generalize Proposition 1 to CF languages”

Proposition 2

Any CF language L on alphabet Σ is given by an integer k , a
standard regular event R on alphabet ∆k = {xi , x̄i | 1 ≤ i ≤ k}, a
[letter-to-letter, erasing] homomorphism h : ∆k → Σ ∪ {ε}, and
the rule

L = h (Dk ∩ R)

The wording did not care to explicit the obvious fact that any
language defined by this equation is CF. This has occasionally
induced others to claim a CST property also in cases where
the statement holds only in one direction.

18 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

“An alternative characterization of families

of CF languages”- C.S.T. II

If L is a regular language, Dyck is replaced by the free monoid
∆∗ (Medvedev Theor.)

The original proof has been essentially reproduced many times
in books and papers.

Label all grammar rules and pick as many brackets for the
Dyck language
Write a CF grammar that has bracketed rules: A → [5BC]5
and A → [3 c]3
Two consecutive steps in a leftmost derivation create a pair of
permitted adjacent left brackets.

A pair of adjacent] [brackets is created in the position B
↓
· C .

All other bracket pairs are forbidden by the 2-SLT language R .
Transliterate each [3 to c and erase all other brackets.

19 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Parameters of proposition L = h(Dk ∩ R) I
alphabet size, type of homomorphism, subclass of regular language

The parameters more investigated are: Dyck alphabet size,
whether the homomorphism is erasing, and their relationship.

Dyck alphabet ver-
sus erasing

homomorphism h

erases some brackets doesn’t erase

al
p
h
ab

et
|D

k
| depends on |G | Ch. & Schüt. [1962]

J. Berstel [1979]
A. Okhotin [2012]

depends on |Σ| but
not on |G |

R. Stanley [1965] C-R & P. San
Pietro [2016]

Doing without erasures and having a grammar-independent
alphabet can be viewed as a tighter specification of the language.

20 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Parameters of proposition L = h(Dk ∩ R) II
alphabet size, type of homomorphism, subclass of regular language

Less attention has been given to the regular language.

R ∈ subclass of regular languages

strictly locally testable
with sliding window
width 2; or
width > 2

regular languages generated by sim-
ple linear CF grammars, “flower au-
tomata”, S. Hirose & M. Yoneda
[1985]

21 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Refinements of proposition L = h(Dk ∩ R) I

Ch. & Schüt. [1962] assume the numbered grammar rules are
identified by a number and are in Chomsky normal form:
λ1 : A → B C , λ2 : A → a.
Dyck grammar rules are : A → [λB C]λ

R. Stanley [1965] is similar to Ch. & Schüt. but each bracket
with label λ is encoded by λ+ 2 brackets:

[λ]λ
[1 [. . . [

︸︷︷︸

λ

[2]2] . . .]
︸︷︷︸

λ

]1

Terminal rules A → a are bracketed as A → [a a]a. Hence the
number of bracket pairs is |Σ|+ 3. Many more brackets are
erased by homomorphism h than in CST construction.

22 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Refinements of proposition L = h(Dk ∩ R) II

Berstel [1979] mentions that using rules in Greibach normal
form, A → aB1B2 . . .Bm, the number of brackets erased to
obtain a word w ∈ L is linearly bounded by the length of w .

Okhotin [2012] assumes rules are in Double Greibach normal
form A → aB1B2 . . .Bmb.

For even length words it is simple to use the bracketing
A → [λB1B2 . . .Bm]λ and the letter-to-letter homomorphism

[λ
h

−→ a,]λ
h

−→ b.
For odd length words, a non-erasing letter-to-word
homomorphism is used.

C-R & P. San Pietro [2016] also assume Double Greibach
normal form and

encode each of Okhotin brackets with an m − tuple of
brackets, taken over an alphabet of j ≥ 2 digits, i.e., using a
base j representation

23 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Refinements of proposition L = h(Dk ∩ R) III

by choosing m large enough, the number j , i.e. the Dyck
alphabet size, is polynomial in the size of alphabet Σ.
approach is analogous to the restatement of Medvedev
Theorem in C-R & P. San Pietro [2012] using an alphabet
independent from the NFA size.
regular language R remains SLT, but with sliding window of
width > 2.

Hirose & Yoneda [1985] use for language R another subclass
of regular languages, those generated by a minimal linear CF
grammar, where “minimal” means one nonterminal. The
corresponding NFA has loops in q0 and from q0 straight-line
paths to final states.

24 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Subclasses of context-free languages I

Ch. & Schütz. observe that by forbidding additional bracket pairs
in the strictly locally testable language R “we have an independent
definition of the notion linear language”
In much the same way they give a general definition of meta-linear
language. They conclude:

“Propositions 1 and 2 thus provide for the possibility of
very natural definitions of the full class of CF languages,
and various subfamilies of the class, independently of the
[taxonomic] approach taken in preceding sections”.

A piece of work in this direction by P. Dömosi & S. Okawa [2001]
characterizes the family of slender CF languages, a subclass of
Linear CF, for which the number of words of the same length is
bounded by a constant.

25 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Subclasses of context-free languages II

Using the properties of slender languages studied by Paun &
Salomaa [1995] they obtain the characterization L = h(D ∩ R)
where

D is a linear Dyck language over a grammar-independent
alphabet, and

the regular language R is a UDL Union of Double Loops:

⋃

i=1...k

{uiv
∗

i wix
∗

i yi} for some words ui , vi

26 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Generalizations for other language models

A CST confers a Patent of Nobility to novel language models!

M. Kanazawa [2013] has a CST for Simple Context-Free Tree
Grammars, related to the Tree-Adjoining Grammars, for which
D. Weir [1988] had already stated a CST.

R. Yoshinaka et al. [2010] have a CST for the family of
Multiple Context-Free languages. a family between CF and
Context-Sensitive invented by H. Seki et al. [1991]

Cherubini et al. [1995] introduce a Generalized Dyck language
for Multi-Push-Down languages, MPD.
An MPD language of order n ≥ 1 is recognized by a
non-deterministic state-less machine equipped with n ordered
push-down stacks.
This family includes the Tree Adjoining Grammar TAG family
(Cherubini & San Pietro [2000])

27 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Multi-Push-Down languages

Generalized Dyck Language of order n, D(n): the alphabet has one
or more (n + 1)-tuples: a, a(1), . . . , a(n), b, b(1), . . . , b(n), . . .
(The Dyck alphabet and the CF languages correspond to case
n = 1, i.e., one push-down stack.)
Each of the n projections of D(n) on a, a(j), b, b(j), . . . is a Dyck
language:

projection on first Dyck alphabet

a b b(1) a a(1) a(1) − a a(1) − − −

a b b(1) a a(1) a(1) a(2) a a(1) a(2) b(2) a(2)

a b − a − − a(2) a − a(2) b(2) a(2)

projection on 2nd Dyck alphabet

A cancellation rule defines Generalized Dyck languages.

Theorem.

A language L is MPD of order n iff
L = h (R ∩ Generalized Dyck of order n), with h and R as in CST.

28 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

A rare application of CST I
Parsing with C-S representation, M. Holden [2011]

CST elegance has attracted many theoreticians, but very few,
if any, real applications have been derived from it.

A likely explanation: to exploit CST for tasks such as parsing
or grammar inference, one has to solve the inverse problem
caused by the homomorphism.

Hulden [2009] proposes a cubic-time parser (as Earley and
CKY) and discusses how to enhance it for probabilistic
parsing.

29 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

A rare application of CST II
Parsing with C-S representation, M. Holden [2011]

Hulden polynomial-time CF parsing algorithm

Language representation

L(G) = h
(
g−1 (D ∩ R)

)







D encodes grammar derivations
h deletes brackets
g deletes terminal symbols

To parse a sentence w = w1w2 . . .wn:

1 Calculate h−1(w). This is a DFA that accepts only w with
arbitrarily many brackets interspersed.

2 Calculate R ∩ h−1(w). This DFA accepts all the locally
correct parses of w but also unbalanced words.

3 Extract from (2) the set of words where brackets are balanced.
The result precisely contains the correct parses of w .

. . . experimental results are not available. 30 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Other homomorphic characterizations I
AntiDyck instead of Dyck, Queue automaton

Replace LIFO stack with a First-In-First-Out queue memory

Queue machine by Emil Post contemporary (1936) and
computationally equivalent to Turing machine

Simple state-less queue machine model recognizes the
Anti-Dyck language (Vauquelin & Franchi-Zannettacci
[1980]), such that (almost) no parentheses are well-nested.
Anti-Dick is defined, as Dyck, by a deletion rule :

(
contains no closed paren.

︷︸︸︷

([
)
)] =⇒ ([)] =

(
[
)
] =⇒ [] =⇒ ε

View (i and)i as arrival/departure of customer at a service:

Anti-Dyck ⇒ service in arrival order
(1 (2 (3)1 (4)2)3)4

Dyck ⇒ service in reversed order
(1 (2 (3)3 (4)4)2)1

31 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Other homomorphic characterizations II
AntiDyck instead of Dyck, Queue automaton

Languages such as Anti-Dyck are generated by Breadth-first
CF grammars of Allevi et al. [1988].

BCF grammars formally identical to CF grammars, but
derivations in breadth-first order.

A 1
2 CST by Cherubini et al. [1990]

Let L be a BCF language, Then ∃ an Anti-Dyck language, a 2-SLT
language R and a homomorphism h s.t. L = h(AntiDyck ∩ R)

The converse is false, because BCF languages are not closed by ∩
with regular languages.

32 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Homomorphic characterizations of Recursive Enumerable
languages

An idea is to characterize the Recursively Enumerable family by
means of the homomorphism of some simpler language E , which
plays the role of Dyck for CF languages. Intersection with a regular
language is no longer needed. Typical characterizations take the
form

L ∈ RE ⇐⇒ L = h(E) where E = L1 ∩ L2 and L1, L2 are:

Ginsburg et al. [1967]: two deterministic CF languages

Baker & Book [1974]: two linear CF languages

Hirose et al. [1985]: two minimal linear languages

further restricted to smaller classes in Okawa & Hirose [2001],
which also contains a survey.

33 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

A negative result for Context-Sensitive Languages I
S. Okawa et al. [1986]

terminal alphabet: Σ = {a, b, . . .}
Dyck: D∆k

over ∆k = {a, a′, b, b′, . . .} ∪ {c1, c
′

1, c2, c
′

2, . . . , ck , c
′

k}
Projection π from ∆k to Σ (same role as homomorphism in CST)

Definition

family F is k − expressed by family F ′ ⇐⇒

∀L ⊆ Σ∗ in F , ∃ language L′ ⊆ ∆∗

k in F ′ : L = π
(
L′ ∩ D∆k

)
(1)

family F is k − characterized by family F ′ ⇐⇒ (1) ∧

∀L′ ⊆ ∆∗

k in F ′ : π
(
L′ ∩ D∆k

)
is in F (2)

34 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

A negative result for Context-Sensitive Languages II
S. Okawa et al. [1986]

Theorem

For any family F ′ closed under ǫ-free homomorphism, for any
integer k ≥ 2 family Context Sensitive is not k-characterized by F ′.

The proof considers a lang. in (Rec.Enum.− Context Sensitive)

Corollary

For any family F closed under ǫ-free homomorphism, the Context
Sensitive family cannot be of the form

{π (L ∩ D∆k
) | L ∈ F , k ≥ 0}

The characterizability of the Context Sensitive family using a Dyck
language remains unsettled for k < 2 or if the homomorphism is
restricted in some way.

35 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

CST for Weighted Context-Free languages I

Weighted automata not only recognize a word, but compute a
weight function. CST characterizations of weighted languages are
actively pursued:

A weighted version of CST by A. Salomaa & M. Soittola
[1978] uses weights from a commutative semiring.

Recent models of weighted push-down automata allow more
general domains for the weights, e.g., average computations
on the reals for probabilistic machines.

Weighted CF grammars with weights from a so-called
valuation monoid, M. Droste & H. Vogler [2013]:

36 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

CST for Weighted Context-Free languages II

. . . we show that any quantitative CF lang. arises as the
image of the intersection of a Dyck lang. and a
recognizable lang. under a suitable weighted morphism,
and also as the image of a Dyck lang. and a recognizable
series under a free monoid morphism [and conversely].
. . . The classical CST is contained in the weighted result
by considering the Boolean semiring.

Further CST characterizations for different weighted automata or
for different weight domains are: L. Herrman & H. Vogler [2015]
and T. Denkinger [2015].

37 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

Half-serious Conclusion

[from The short glossary of rhetorics and metrics:]

Parenthesis or parenthetical clause is the addition of
unnecessary elements or delucidations into a sentence. It
is marked off by round or square brackets parentheses,
dashes or commas.

Should I apologize for imposing one hour of unnecessary elements
on my distinguished audience? My lawyer, M. D. Murray of the
University of Michigan Law School, says definitely NO in his:

For the Love of Parentheticals: The Story of
Parenthetical Usage in Synthesis, Rhetoric, Economics,
and Narrative Reasoning

I just recounted Schüzenberger’s lively heritage on the essential
role of parentheses!

38 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

References I

B. S. Baker and R. V. Book.

Reversal-bounded multipushdown machines.
J. Comput. Syst. Sci., 8(3):315–332, 1974.

J. Berstel.

Transductions and Context-Free Languages.
Teubner, Stuttgart, 1979.

L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi.

Multi-push-down languages and grammars.
Int. J. Found. Comput. Sci., 7(3):253–292, 1996.

A. Cherubini and P. San Pietro.

Tree adjoining languages and multipushdown languages.
Theory Comput. Syst., 33(4):257–293, 2000.

N. Chomsky and M. Schützenberger.

The algebraic theory of context-free languages.
In Brafford and Hirschenber, editors, Computer programming and formal systems, pages 118–161.
North-Holland, Amsterdam, 1963.

S. Crespi Reghizzi and P. San Pietro.

From regular to strictly locally testable languages.
Int. J. Found. Comput. Sci., 23(8):1711–1728, 2012.

39 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

References II

S. Crespi-Reghizzi and P. San Pietro.

The missing case in Chomsky-Schützenberger theorem.
In Language and Automata Theory and Applications - 10th International Conference, LATA 2016, pages
345–358, 2016.

T. Denkinger.

A Chomsky-Schützenberger representation theorem for weighted multiple context-free
languages.
In Proceedings of the 12th International Conference on Finite-State Methods and Natural Language
Processing (FSMNLP 2015), 2015.

P. Dömösi and S. Okawa.

A Chomsky-Schützenberger-Stanley type characterization of the class of slender
context-free languages.
Acta Cybern., 15(1):25–32, 2001.

M. Droste and H. Vogler.

The Chomsky-Schützenberger theorem for quantitative context-free languages.
In Developments in Language Theory - 17th International Conference, DLT 2013, Marne-la-Vallée, France,
June 18-21, 2013. Proceedings, volume 7907 of Lecture Notes in Computer Science, pages 203–214.
Springer, 2013.

S. Ginsburg, S. A. Greibach, and M. A. Harrison.

One-way stack automata.
J. ACM, 14(2):389–418, 1967.

40 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

References III

L. Herrmann and H. Vogler.

A Chomsky-Schützenberger theorem for weighted automata with storage.
In Algebraic Informatics - 6th International Conference, CAI 2015, Stuttgart, Germany, September 1-4,
2015. Proceedings, volume 9270 of Lecture Notes in Computer Science, pages 115–127. Springer,
2015.

S. Hirose, S. Okawa, and M. Yoneda.

A homomorphic characterization of recursively enumerable languages.
Theor. Comput. Sci., 35:261 – 269, 1985.

S. Hirose and M. Yoneda.

On the Chomsky and Stanley’s homomorphic characterization of context-free languages.
Theor. Comput. Sci., 36:109–112, 1985.

M. Hulden.

Parsing cfgs and pcfgs with a chomsky-schützenberger representation.
In Proceedings of the 4th Conference on Human Language Technology: Challenges for Computer Science
and Linguistics, LTC’09, pages 151–160, Berlin, Heidelberg, 2011. Springer-Verlag.

M. Kanazawa.

Multidimensional trees and a Chomsky-Schützenberger-Weir representation theorem for
simple context-free tree grammars.
Journal of Logic and Computation, 2014.

41 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

References IV

Y. T. Medvedev.

On the class of events representable in a finite automaton.
In E. F. Moore, editor, Sequential machines – Selected papers (translated from Russian), pages
215–227. Addison-Wesley, New York, NY, USA, 1964.

S. Okawa and S. Hirose.

Homomorphic characterizations of recursively enumerable languages with very small
language classes.
Theor. Comput. Sci., 250(1-2):55–69, 2001.

S. Okawa, S. Hirose, and M. Yoneda.

On the impossibility of the homomorphic characterization of context-sensitive languages.
Theor. Comput. Sci., 44:225–228, 1986.

A. Okhotin.

Non-erasing variants of the Chomsky—Schützenberger theorem.
In Proceedings of the 16th International Conference on Developments in Language Theory, DLT’12, pages
121–129, Berlin, Heidelberg, 2012. Springer-Verlag.

A. Salomaa and M. Soittola.

Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer, 1978.

R. J. Stanley.

Finite state representations of context-free languages.
M.I.T. Res. Lab. Electron. Quart. Progr. Rept., 76(1):276–279, 1965.

42 / 43

Introduction The CS theorem Refinements Generalizations Other homomorphic characterizations

References V

D. J. Weir.

Characterizing Mildly Context-Sensitive Grammar Formalisms.
PhD thesis, Sciences, 1988.

R. Yoshinaka, Y. Kaji, and H. Seki.

Chomsky-Schützenberger-type characterization of multiple context-free languages.
In Language and Automata Theory and Applications, 4th International Conference, LATA 2010, volume
6031 of Lecture Notes in Computer Science, pages 596–607. Springer, 2010.

43 / 43

	Introduction
	The CS theorem
	Refinements
	Generalizations
	Other homomorphic characterizations

