Characterizing classes of regular languages using prefix codes of bounded synchronization delay

Volker Diekert¹

Universität Stuttgart

MPS2106, Bordeaux, March 21st, 2016

in memoriam: Marcel-Paul Schützenberger

¹Joint work with Tobias Walter

① On finite monoids having only trivial subgroups. Information and Control, 8:190–194, 1965. ${\rm SF}(A^*) = {\bf AP}(A^*)$

① On finite monoids having only trivial subgroups. Information and Control, 8:190–194, 1965. $SF(A^*) = \mathbf{AP}(A^*) = FO[<](A^*)$

① On finite monoids having only trivial subgroups. Information and Control, 8:190–194, 1965. $SF(A^*) = \mathbf{AP}(A^*) = FO[<](A^*) = LTL(A^*)$

① On finite monoids having only trivial subgroups. Information and Control, 8:190–194, 1965. $SF(A^*) = \mathbf{AP}(A^*) = FO[<](A^*) = LTL(A^*)$

Sur certaines opérations de fermeture dans les langages rationnels.

In Symposia Mathematica, Vol. XV (Convegno di Informatica Teorica, INDAM, Roma, 1973), pages 245–253, 1975.

$$SD(A^*) = SF(A^*) = \mathbf{AP}(A^*) = \overline{\mathbf{1}}(A^*)$$

 On finite monoids having only trivial subgroups. Information and Control, 8:190–194, 1965.

$$\mathrm{SF}(A^*) = \mathbf{AP}(A^*) = \mathrm{FO}[<](A^*) = \mathrm{LTL}(A^*)$$

Sur certaines opérations de fermeture dans les langages rationnels.

In Symposia Mathematica, Vol. XV (Convegno di Informatica Teorica, INDAM, Roma, 1973), pages 245–253, 1975.

$$SD(A^*) = SF(A^*) = \mathbf{AP}(A^*) = \overline{\mathbf{1}}(A^*)$$

Sur les monoides finis dont les groupes sont commutatifs. RAIRO, 8(R-1):55-61, 1974.

$$\mathrm{SD}_{\mathbf{A}\mathbf{b}}(A^*) = \overline{\mathbf{A}\mathbf{b}}(A^*)$$

Theorem (D. and Walter 2016)

$$\mathrm{SD}_{\mathbf{H}}(A^{\infty}) = \overline{\mathbf{H}}(A^{\infty})$$

 $\bullet \ A = {\sf finite \ alphabet}$

- \bullet A = finite alphabet
- $A^* =$ finite words, $A^{\omega} =$ infinite words, $A^{\infty} = A^* \cup A^{\omega}$.

- \bullet A = finite alphabet
- $A^* =$ finite words, $A^{\omega} =$ infinite words, $A^{\infty} = A^* \cup A^{\omega}$.
- Regular languages: finite subsets & closure under union, concatenation, and Kleene-star
 recognizable by a finite monoid.

- \bullet A = finite alphabet
- $A^* =$ finite words, $A^{\omega} =$ infinite words, $A^{\infty} = A^* \cup A^{\omega}$.
- Regular languages: finite subsets & closure under union, concatenation, and Kleene-star
 recognizable by a finite monoid.
- Star-free languages: finite subsets & closure under union, concatenation, complementation, but no Kleene-star
 recognizable by a finite aperiodic monoid.

- \bullet A = finite alphabet
- $A^* =$ finite words, $A^{\omega} =$ infinite words, $A^{\infty} = A^* \cup A^{\omega}$.
- Regular languages: finite subsets & closure under union, concatenation, and Kleene-star
 recognizable by a finite monoid.
- Star-free languages: finite subsets & closure under union, concatenation, complementation, but no Kleene-star
 recognizable by a finite aperiodic monoid.
- $h: A^* \to M$ recognizes $L \subseteq A^*$ if $h^{-1}(h(L)) = L$.

- \bullet A = finite alphabet
- $A^* =$ finite words, $A^{\omega} =$ infinite words, $A^{\infty} = A^* \cup A^{\omega}$.
- Regular languages: finite subsets & closure under union, concatenation, and Kleene-star
 recognizable by a finite monoid.
- Star-free languages: finite subsets & closure under union, concatenation, complementation, but no Kleene-star
 recognizable by a finite aperiodic monoid.
- $h: A^* \to M$ recognizes $L \subseteq A^*$ if $h^{-1}(h(L)) = L$.
- ullet M is aperiodic if all subgroups are trivial.

- \bullet A = finite alphabet
- $A^* =$ finite words, $A^{\omega} =$ infinite words, $A^{\infty} = A^* \cup A^{\omega}$.
- Regular languages: finite subsets & closure under union, concatenation, and Kleene-star
 recognizable by a finite monoid.
- Star-free languages: finite subsets & closure under union, concatenation, complementation, but no Kleene-star
 recognizable by a finite aperiodic monoid.
- $h: A^* \to M$ recognizes $L \subseteq A^*$ if $h^{-1}(h(L)) = L$.
- ullet M is aperiodic if all subgroups are trivial.
- 1 = {1} = trivial group, Ab = finite abelian groups,
 Sol = finite solvable groups, G = all finite groups,
 Mon = all finite monoids.

Varieties

A variety means here a class of finite monoids which is closed under finite direct products and divisors. A monoid N is a divisor of M if N is the homomorphic image of a submonoid of M.

Example

1, Ab, Sol, G are varieties of groups.

If ${f V}$ is a variety, then we let

$$\mathbf{V}(A^*) = \{L \subseteq A^* \mid L \text{ is recognized by some } M \in V\}.$$

If ${\bf H}$ is a variety of groups, then

$$\overline{\mathbf{H}} = \{ M \in \mathbf{Mon} \mid \text{ all subgroups of } M \text{ are in } \mathbf{H} \}$$
 .

Example¹

$$\overline{1} = AP$$
, $\overline{G} = Mon$.

Prefix codes of bounded synchronization delay

 $K\subseteq A^+$ is called prefix code if it is prefix-free. That is: $u,uv\in K$ implies u=uv.

A prefix-free language K is a code since every word $u \in K^*$ admits a unique factorization $u = u_1 \cdots u_k$ with $k \geq 0$ and $u_i \in K$.

A prefix code K has bounded synchronization delay if for some $d \in \mathbb{N}$ and for all $u, v, w \in A^*$ we have: if $uvw \in K^*$ and $v \in K^d$, then $uv \in K^*$.

Example

Every $B\subseteq A$ yields a prefix code with synchronization delay 0. If $c\in A\setminus B$, then B^*c is a prefix code with synchr. delay 1.

Application

Assume that Alice sends a message using a prefix code K with synchronization delay d of the form

$$u_1v_1w_1\,u_2v_2w_2\,u_3v_3w_3\cdots u_kv_kw_k$$

with $u_i, v_i, w_i \in K^*$, but Bob receives, say due to noise, only a subsequence:

$$v_1w_1 v_2w_2 v_3w_3 \cdots v_kw_k$$

such that $v_i \in K^d$. Then Bob can recover a subsequence of the original message corresponding to the subsequence

$$(w_1, w_2, w_3, \dots, w_k) \in (K^*)^k.$$

$\mathbf{H}=\mathsf{a}$ variety of groups

Lemma

Let $K \in \overline{\mathbf{H}}(A^*)$ be a prefix code of bounded synchronization delay. Then: $K^* \in \overline{\mathbf{H}}(A^*)$.

Proof.

We have

$$A^* \setminus K^* = \bigcup_{0 \le i} \left(K^i A A^* \setminus K^{i+1} A^* \right).$$

Now, let d be the synchronization delay of K. Then we can write

$$A^* \setminus K^* = A^* K^d (AA^* \setminus KA^*) \cup \bigcup_{0 \le i < d} (K^i AA^* \setminus K^{i+1} A^*).$$

Let G be a finite group and $\mathcal C$ a class of languages.

 $L \subseteq A^*$ is a group language for G, if $L = \gamma^{-1}(1)$ for some homomorphism $\gamma: A^* \to G$.

Let G be a finite group and $\mathcal C$ a class of languages.

 $L\subseteq A^*$ is a group language for G, if $L=\gamma^{-1}(1)$ for some homomorphism $\gamma:A^*\to G$.

 $L\subseteq A^*$ is a generalized group language for G over $\mathcal C$, if $L=\gamma^{-1}(1)$ for some homomorphism $\gamma:K^*\to G$ such that

 $\textbf{0} \quad K \subseteq A^+ \text{ is a prefix code of bounded synchronization delay,}$

Let G be a finite group and $\mathcal C$ a class of languages.

 $L\subseteq A^*$ is a group language for G, if $L=\gamma^{-1}(1)$ for some homomorphism $\gamma:A^*\to G.$

 $L\subseteq A^*$ is a generalized group language for G over $\mathcal C$, if $L=\gamma^{-1}(1)$ for some homomorphism $\gamma:K^*\to G$ such that

- $\bullet \ K \subseteq A^+ \text{ is a prefix code of bounded synchronization delay,}$
- $(\gamma^{-1}(g) \cap K) \in \mathcal{C} \text{ for all } g \in G.$

Let G be a finite group and $\mathcal C$ a class of languages.

 $L\subseteq A^*$ is a group language for G, if $L=\gamma^{-1}(1)$ for some homomorphism $\gamma:A^*\to G$.

 $L\subseteq A^*$ is a generalized group language for G over $\mathcal C$, if $L=\gamma^{-1}(1)$ for some homomorphism $\gamma:K^*\to G$ such that

- $lackbox{0} K \subseteq A^+$ is a prefix code of bounded synchronization delay,

Proposition (Schützenberger (1974))

Let $L \subseteq A^*$ be a generalized group language for G over $\overline{\mathbf{H}}(A^*)$ with $G \in \mathbf{H}$. Then we have $L \in \overline{\mathbf{H}}(A^*)$.

Schützenberger's $SD_{\mathbf{H}}$ classes

By $\mathrm{SD}_{\mathbf{H}}(A^*)$ we denote the set of regular languages which is inductively defined as follows.

Schützenberger's SD_H classes

By $\mathrm{SD}_{\mathbf{H}}(A^*)$ we denote the set of regular languages which is inductively defined as follows.

• Finite subsets of A^* are in $SD_{\mathbf{H}}(A^*)$.

By $\mathrm{SD}_{\mathbf{H}}(A^*)$ we denote the set of regular languages which is inductively defined as follows.

- Finite subsets of A^* are in $SD_{\mathbf{H}}(A^*)$.
- ② If $L, K \in \mathrm{SD}_{\mathbf{H}}(A^*)$, then $L \cup K, L \cdot K \in \mathrm{SD}_{\mathbf{H}}(A^*)$

By $\mathrm{SD}_{\mathbf{H}}(A^*)$ we denote the set of regular languages which is inductively defined as follows.

- Finite subsets of A^* are in $SD_{\mathbf{H}}(A^*)$.
- ② If $L, K \in \mathrm{SD}_{\mathbf{H}}(A^*)$, then $L \cup K, L \cdot K \in \mathrm{SD}_{\mathbf{H}}(A^*)$
- $\textbf{ If } L \subseteq A^* \text{ is a generalized group language for } G \text{ over } \mathrm{SD}_{\mathbf{H}}(A^*) \text{ with } G \in \mathbf{H} \text{, then } L \in \mathrm{SD}_{\mathbf{H}}(A^*)$

By $\mathrm{SD}_{\mathbf{H}}(A^*)$ we denote the set of regular languages which is inductively defined as follows.

- Finite subsets of A^* are in $SD_{\mathbf{H}}(A^*)$.
- ② If $L, K \in \mathrm{SD}_{\mathbf{H}}(A^*)$, then $L \cup K, L \cdot K \in \mathrm{SD}_{\mathbf{H}}(A^*)$
- $\textbf{ If } L\subseteq A^* \text{ is a generalized group language for } G \text{ over } \mathrm{SD}_{\mathbf{H}}(A^*) \text{ with } G\in \mathbf{H} \text{, then } L\in \mathrm{SD}_{\mathbf{H}}(A^*)$

Proposition (Schützenberger (1974) reformulated)

$$\mathrm{SD}_{\mathbf{H}}(A^*) \subseteq \overline{\mathbf{H}}(A^*)$$

By $\mathrm{SD}_{\mathbf{H}}(A^*)$ we denote the set of regular languages which is inductively defined as follows.

- Finite subsets of A^* are in $SD_{\mathbf{H}}(A^*)$.
- ② If $L, K \in SD_{\mathbf{H}}(A^*)$, then $L \cup K, L \cdot K \in SD_{\mathbf{H}}(A^*)$
- $\textbf{ If } L\subseteq A^* \text{ is a generalized group language for } G \text{ over } \mathrm{SD}_{\mathbf{H}}(A^*) \text{ with } G\in \mathbf{H} \text{, then } L\in \mathrm{SD}_{\mathbf{H}}(A^*)$

Proposition (Schützenberger (1974) reformulated)

$$\mathrm{SD}_{\mathbf{H}}(A^*) \subseteq \overline{\mathbf{H}}(A^*)$$

Theorem (Schützenberger (1975) and (1974))

$$\mathrm{SD}_{\mathbf{1}}(A^*) = \overline{\mathbf{1}}(A^*) = \mathbf{AP}(A^*)$$
 and $\mathrm{SD}_{\mathbf{Ab}}(A^*) = \overline{\mathbf{Ab}}(A^*)$

Extensions of Schützenberger's results (1965 – 1975)

• Perrin (1984) generalized $SF(A^*) = \mathbf{AP}(A^*)$ to $SF(A^{\omega}) = \mathbf{AP}(A^{\omega})$, hence he obtained

$$SF(A^{\infty}) = \mathbf{AP}(A^{\infty}).$$

② D. and Kufleitner (2013) generalized $\mathrm{SD}_{\mathbf{1}}(A^*) = \mathbf{AP}(A^*)$ to $\mathrm{SD}_{\mathbf{1}}(A^\omega) = \mathbf{AP}(A^\omega)$, hence we obtained

$$\mathrm{SD}_{\mathbf{1}}(A^{\infty}) = \mathbf{AP}(A^{\infty}).$$

3 D. and Walter (2016) generalized $\mathrm{SD}_{\mathbf{H}}(A^*) \subseteq \overline{\mathbf{H}}(A^*)$ and $\mathrm{SD}_{\mathbf{Ab}}(A^*) = \overline{\mathbf{Ab}}(A^*)$ to $\mathrm{SD}_{\mathbf{H}}(A^*) = \overline{\mathbf{H}}(A^*)$ and $\mathrm{SD}_{\mathbf{H}}(A^\omega) = \overline{\mathbf{H}}(A^\omega)$, hence we obtained

$$\mathrm{SD}_{\mathbf{H}}(A^{\infty}) = \overline{\mathbf{H}}(A^{\infty}).$$

The local divisor technique was established in finite semigroup theory around 2004 as a tool to simplify inductive proofs. (In associative algebra the idea is due to Kurt Meyberg 1972.)

The definition is a follows: Let M be a monoid and $c \in M$. Consider the set $cM \cap Mc$ and define a new multiplication

$$xc \circ cy = xcy$$
.

Then $M_c = (cM \cap Mc, \circ, c)$ is monoid: the local divisor at c.

Facts

• $\lambda_c: \{x \in M \mid cx \in Mc\} \to M_c$ given by $\lambda_c(x) = cx$ is a surjective homomorphism. Hence, M_c is a divisor of M.

The local divisor technique was established in finite semigroup theory around 2004 as a tool to simplify inductive proofs. (In associative algebra the idea is due to Kurt Meyberg 1972.)

The definition is a follows: Let M be a monoid and $c \in M$. Consider the set $cM \cap Mc$ and define a new multiplication

$$xc \circ cy = xcy$$
.

Then $M_c = (cM \cap Mc, \circ, c)$ is monoid: the local divisor at c.

Facts

- $\lambda_c: \{x \in M \mid cx \in Mc\} \to M_c$ given by $\lambda_c(x) = cx$ is a surjective homomorphism. Hence, M_c is a divisor of M.
- If c is a unit, then M_c is isomorphic to M.

The local divisor technique was established in finite semigroup theory around 2004 as a tool to simplify inductive proofs. (In associative algebra the idea is due to Kurt Meyberg 1972.)

The definition is a follows: Let M be a monoid and $c \in M$. Consider the set $cM \cap Mc$ and define a new multiplication

$$xc \circ cy = xcy$$
.

Then $M_c = (cM \cap Mc, \circ, c)$ is monoid: the local divisor at c.

Facts

- $\lambda_c: \{x \in M \mid cx \in Mc\} \to M_c$ given by $\lambda_c(x) = cx$ is a surjective homomorphism. Hence, M_c is a divisor of M.
- If c is a unit, then M_c is isomorphic to M.
- If $c=c^2$, then M_c is the standard "local monoid".

The local divisor technique was established in finite semigroup theory around 2004 as a tool to simplify inductive proofs. (In associative algebra the idea is due to Kurt Meyberg 1972.)

The definition is a follows: Let M be a monoid and $c \in M$. Consider the set $cM \cap Mc$ and define a new multiplication

$$xc \circ cy = xcy$$
.

Then $M_c = (cM \cap Mc, \circ, c)$ is monoid: the local divisor at c.

Facts

- $\lambda_c : \{x \in M \mid cx \in Mc\} \to M_c$ given by $\lambda_c(x) = cx$ is a surjective homomorphism. Hence, M_c is a divisor of M.
- If c is a unit, then M_c is isomorphic to M.
- If $c=c^2$, then M_c is the standard "local monoid".
- If c is not a unit, then $1 \notin M_c$. Hence, if c is not a unit and if M is finite, then $|M_c| < |M|$.

Assume we wish to prove a property P for homomorphisms $\varphi:A^*\to M$ for finite monoids $M\in \mathbf{V}.$

ullet Base for the induction: prove P for finite groups $G \in \mathbf{V}$.

Assume we wish to prove a property P for homomorphisms $\varphi:A^*\to M$ for finite monoids $M\in \mathbf{V}.$

- Base for the induction: prove P for finite groups $G \in \mathbf{V}$.
- If M is not a group choose a letter $c \in A$ such that $\varphi(c) \in M$ is not a unit. Define $B = A \setminus \{c\}$.

Assume we wish to prove a property P for homomorphisms $\varphi:A^*\to M$ for finite monoids $M\in \mathbf{V}.$

- ullet Base for the induction: prove P for finite groups $G \in \mathbf{V}$.
- If M is not a group choose a letter $c \in A$ such that $\varphi(c) \in M$ is not a unit. Define $B = A \setminus \{c\}$.
- P holds for $\varphi|_{B^*}: B^* \to M$ by induction because |B| < |A|. (Baby-step)

Assume we wish to prove a property P for homomorphisms $\varphi:A^*\to M$ for finite monoids $M\in \mathbf{V}.$

- ullet Base for the induction: prove P for finite groups $G \in \mathbf{V}$.
- If M is not a group choose a letter $c \in A$ such that $\varphi(c) \in M$ is not a unit. Define $B = A \setminus \{c\}$.
- P holds for $\varphi|_{B^*}: B^* \to M$ by induction because |B| < |A|. (Baby-step)
- P holds for $\psi: T^* \to M_{\varphi(c)}$ for every finite T by induction because $\left| M_{\varphi(c)} \right| < |M|$. (Giant-step)

Assume we wish to prove a property P for homomorphisms $\varphi:A^*\to M$ for finite monoids $M\in \mathbf{V}.$

- Base for the induction: prove P for finite groups $G \in \mathbf{V}$.
- If M is not a group choose a letter $c \in A$ such that $\varphi(c) \in M$ is not a unit. Define $B = A \setminus \{c\}$.
- P holds for $\varphi|_{B^*}: B^* \to M$ by induction because |B| < |A|. (Baby-step)
- P holds for $\psi: T^* \to M_{\varphi(c)}$ for every finite T by induction because $\left| M_{\varphi(c)} \right| < |M|$. (Giant-step)
- B^*c is a (prefix) code (of delay 1) and every mapping $\sigma: B^*c \to T$ can be extended to a homomorphism $\sigma: (B^*c)^+ = A^*c \to T^+.$

Assume we wish to prove a property P for homomorphisms $\varphi:A^*\to M$ for finite monoids $M\in \mathbf{V}.$

- ullet Base for the induction: prove P for finite groups $G \in \mathbf{V}$.
- If M is not a group choose a letter $c \in A$ such that $\varphi(c) \in M$ is not a unit. Define $B = A \setminus \{c\}$.
- P holds for $\varphi|_{B^*}: B^* \to M$ by induction because |B| < |A|. (Baby-step)
- P holds for $\psi: T^* \to M_{\varphi(c)}$ for every finite T by induction because $\left| M_{\varphi(c)} \right| < |M|$. (Giant-step)
- B^*c is a (prefix) code (of delay 1) and every mapping $\sigma: B^*c \to T$ can be extended to a homomorphism $\sigma: (B^*c)^+ = A^*c \to T^+.$
- ullet One can choose T and σ such that

$$\varphi(cwc) = \psi\sigma(wc)$$

Assume we wish to prove a property P for homomorphisms $\varphi:A^*\to M$ for finite monoids $M\in \mathbf{V}.$

- Base for the induction: prove P for finite groups $G \in \mathbf{V}$.
- If M is not a group choose a letter $c \in A$ such that $\varphi(c) \in M$ is not a unit. Define $B = A \setminus \{c\}$.
- P holds for $\varphi|_{B^*}: B^* \to M$ by induction because |B| < |A|. (Baby-step)
- P holds for $\psi: T^* \to M_{\varphi(c)}$ for every finite T by induction because $\left| M_{\varphi(c)} \right| < |M|$. (Giant-step)
- B^*c is a (prefix) code (of delay 1) and every mapping $\sigma: B^*c \to T$ can be extended to a homomorphism $\sigma: (B^*c)^+ = A^*c \to T^+$.
- One can choose T and σ such that

$$\varphi(cwc) = \psi\sigma(wc)$$

and then (hopefully) a miracle happens:

Assume we wish to prove a property P for homomorphisms $\varphi:A^*\to M$ for finite monoids $M\in \mathbf{V}.$

- Base for the induction: prove P for finite groups $G \in \mathbf{V}$.
- If M is not a group choose a letter $c \in A$ such that $\varphi(c) \in M$ is not a unit. Define $B = A \setminus \{c\}$.
- P holds for $\varphi|_{B^*}: B^* \to M$ by induction because |B| < |A|. (Baby-step)
- P holds for $\psi: T^* \to M_{\varphi(c)}$ for every finite T by induction because $\left| M_{\varphi(c)} \right| < |M|$. (Giant-step)
- B^*c is a (prefix) code (of delay 1) and every mapping $\sigma: B^*c \to T$ can be extended to a homomorphism $\sigma: (B^*c)^+ = A^*c \to T^+$.
- ullet One can choose T and σ such that

$$\varphi(cwc) = \psi\sigma(wc)$$

and then (hopefully) a miracle happens: P holds for φ .

Example for local divisor decomposition

is solvable but not abelian.

 $M = \{a,b\}^* \times \{\delta,\sigma\}^*$ with a zero 0 modulo defining relations: $a^2 = b^2 = ab = ba = 0$, $a\delta = a$, $\delta\sigma = \sigma\delta^2$, $\delta^3 = 1$, and $\sigma^2 = 1$. The subgroup generated by δ and σ is the symmetric group \mathfrak{S}_3 ; it

 $M[a,\sigma,\delta]$ $M_b\simeq\mathfrak{S}_3\cup\{0\}$ $M_b\simeq\mathfrak{S}_3\cup\{0\}$ $M[a,\sigma,\delta]_a\simeq\mathbb{Z}/2\mathbb{Z}$ \mathfrak{S}_3 $(M_b)_0\simeq\{1\}$

• Simplified proof for $LTL = FO = \mathbf{AP}$ for finite and infinite words and "traces". D. and Gastin (2006)

- Simplified proof for $LTL = FO = \mathbf{AP}$ for finite and infinite words and "traces". D. and Gastin (2006)
- "One-page-proof" for $\mathrm{SF}=\mathbf{AP}$ for finite (and infinite) words. Kufleitner (2010)

- Simplified proof for $LTL = FO = \mathbf{AP}$ for finite and infinite words and "traces". D. and Gastin (2006)
- "One-page-proof" for $\mathrm{SF}=\mathbf{AP}$ for finite (and infinite) words. Kufleitner (2010)
- Aperiodic languages are Church-Rosser congruential.
 D., Kufleitner, and Weil (2011)

- Simplified proof for $LTL = FO = \mathbf{AP}$ for finite and infinite words and "traces". D. and Gastin (2006)
- "One-page-proof" for $\mathrm{SF}=\mathbf{AP}$ for finite (and infinite) words. Kufleitner (2010)
- Aperiodic languages are Church-Rosser congruential.
 D., Kufleitner, and Weil (2011)
- Regular languages are Church-Rosser congruential.
 D., Kufleitner, Reinhardt, and Walter (2012)

- Simplified proof for $LTL = FO = \mathbf{AP}$ for finite and infinite words and "traces". D. and Gastin (2006)
- "One-page-proof" for $SF = \mathbf{AP}$ for finite (and infinite) words. Kufleitner (2010)
- Aperiodic languages are Church-Rosser congruential.
 D., Kufleitner, and Weil (2011)
- Regular languages are Church-Rosser congruential.
 D., Kufleitner, Reinhardt, and Walter (2012)
- Simplified proof for the Krohn-Rhodes Theorem.
 D., Kufleitner, and Steinberg (2012)

- Simplified proof for $LTL = FO = \mathbf{AP}$ for finite and infinite words and "traces". D. and Gastin (2006)
- "One-page-proof" for $\mathrm{SF}=\mathbf{AP}$ for finite (and infinite) words. Kufleitner (2010)
- Aperiodic languages are Church-Rosser congruential.
 D., Kufleitner, and Weil (2011)
- Regular languages are Church-Rosser congruential.
 D., Kufleitner, Reinhardt, and Walter (2012)
- Simplified proof for the Krohn-Rhodes Theorem.
 D., Kufleitner, and Steinberg (2012)
- $SD(A^{\omega}) = \mathbf{AP}(A^{\omega})$. D. and Kufleitner (2013)

- Simplified proof for $LTL = FO = \mathbf{AP}$ for finite and infinite words and "traces". D. and Gastin (2006)
- "One-page-proof" for $\mathrm{SF}=\mathbf{AP}$ for finite (and infinite) words. Kufleitner (2010)
- Aperiodic languages are Church-Rosser congruential.
 D., Kufleitner, and Weil (2011)
- Regular languages are Church-Rosser congruential.
 D., Kufleitner, Reinhardt, and Walter (2012)
- Simplified proof for the Krohn-Rhodes Theorem.
 D., Kufleitner, and Steinberg (2012)
- $SD(A^{\omega}) = \mathbf{AP}(A^{\omega})$. D. and Kufleitner (2013)
- New interpretation of Green's Lemma: Schützenberger categories. Costa and Steinberg (2014)

- Simplified proof for $LTL = FO = \mathbf{AP}$ for finite and infinite words and "traces". D. and Gastin (2006)
- "One-page-proof" for $\mathrm{SF}=\mathbf{AP}$ for finite (and infinite) words. Kufleitner (2010)
- Aperiodic languages are Church-Rosser congruential.
 D., Kufleitner, and Weil (2011)
- Regular languages are Church-Rosser congruential.
 D., Kufleitner, Reinhardt, and Walter (2012)
- Simplified proof for the Krohn-Rhodes Theorem.
 D., Kufleitner, and Steinberg (2012)
- $SD(A^{\omega}) = \mathbf{AP}(A^{\omega})$. D. and Kufleitner (2013)
- New interpretation of Green's Lemma: Schützenberger categories. Costa and Steinberg (2014)
- $\mathrm{SD}_{\mathbf{H}}(A^{\infty}) = \overline{\mathbf{H}}(A^{\infty})$. D. and Walter (2016)

Main steps in showing $\overline{\mathbf{H}}(A^*) \subseteq \mathrm{SD}_{\mathbf{H}}(A^*)$

Starting point: $\varphi:A^*\to M$, all subgroups of M are divisors of $G\in \mathbf{H}$. Wlog. M is not a group. Choose $c\in A$ such that $\varphi(c)$ is not a unit. We write $[w]=\varphi^{-1}(w)$ and $T=\{[u]\mid u\in B^*\}$ becomes a finite alphabet.

Let $M_c = M_{\varphi(c)}$ the local divisor at $\varphi(c)$. Define

$$\psi: T^* \to M_c, \quad [u] \mapsto \varphi(cuc).$$

Then

$$\psi([u_1]\cdots[u_n]) = \varphi(cu_1c) \circ \cdots \circ \varphi(cu_nc)$$

= $\varphi(cu_1c\cdots cu_nc) = \varphi(c) \cdot \varphi(u_1c\cdots u_nc).$

Define $\sigma: (B^*c)^* \to T^*$ with $\sigma(u_c) = [u]$. Then

$$\forall w \in A^* : \varphi(cwc) = \psi \sigma(wc).$$

"Essentially" it remains to show

$$\sigma^{-1}(\mathrm{SD}_G(T^*)) \subseteq \mathrm{SD}_G(A^*).$$

$$\sigma^{-1}(\mathrm{SD}_G(T^*)) \subseteq \mathrm{SD}_G(A^*)$$

We have to show $\sigma^{-1}(K) \in \mathrm{SD}_G(A^*)$ for all $K \in \mathrm{SD}_G(T^*)$. This is done by structural induction.

The key observation is;

 $\sigma^{-1}(\mathrm{SD}_G(T^*)) \subseteq \mathrm{SD}_G(A^*)$

We have to show $\sigma^{-1}(K) \in \mathrm{SD}_G(A^*)$ for all $K \in \mathrm{SD}_G(T^*)$. This is done by structural induction.

The key observation is; if $K \in \mathrm{SD}_G(T^*)$ be a prefix code of synchronization delay d, then $\sigma^{-1}(K)$ is a prefix code of synchronization delay d+1. (Exercise.)

• The corresponding result for infinite words is more demanding.

- The corresponding result for infinite words is more demanding.
- For $\mathbf{H} = \mathbf{Sol}_q$ we obtain via a result of Straubing, Thérien, and Thomas the characterization:

$$(FO + MOD_q)[<](A^{\infty}) = SD_{\mathbf{Sol}_q}(A^{\infty}).$$

- The corresponding result for infinite words is more demanding.
- For $\mathbf{H} = \mathbf{Sol}_q$ we obtain via a result of Straubing, Thérien, and Thomas the characterization: $(FO + \mathrm{MOD}_q)[<](A^{\infty}) = \mathrm{SD}_{\mathbf{Sol}_q}(A^{\infty}).$
- The monoid decomposition along proper submonoids and local divisors leads a purely algebraic description using "local" Rees extension. Answering thereby a recent question of Almeida and Klíma about "bullet varieties".

- The corresponding result for infinite words is more demanding.
- For $\mathbf{H} = \mathbf{Sol}_q$ we obtain via a result of Straubing, Thérien, and Thomas the characterization: $(FO + \mathrm{MOD}_q)[<](A^{\infty}) = \mathrm{SD}_{\mathbf{Sol}_q}(A^{\infty}).$
- The monoid decomposition along proper submonoids and local divisors leads a purely algebraic description using "local" Rees extension. Answering thereby a recent question of Almeida and Klíma about "bullet varieties".
- Straubing (1979) gave a description of the "star-free" closure
 of a variety in terms of Mal'cev products. Is there a way to
 use a characterization with prefix codes of bounded
 synchronization delay?

- The corresponding result for infinite words is more demanding.
- For $\mathbf{H} = \mathbf{Sol}_q$ we obtain via a result of Straubing, Thérien, and Thomas the characterization: $(FO + \mathrm{MOD}_q)[<](A^{\infty}) = \mathrm{SD}_{\mathbf{Sol}_q}(A^{\infty}).$
- The monoid decomposition along proper submonoids and local divisors leads a purely algebraic description using "local" Rees extension. Answering thereby a recent question of Almeida and Klíma about "bullet varieties".
- Straubing (1979) gave a description of the "star-free" closure
 of a variety in terms of Mal'cev products. Is there a way to
 use a characterization with prefix codes of bounded
 synchronization delay?

MERCI

- The corresponding result for infinite words is more demanding.
- For $\mathbf{H} = \mathbf{Sol}_q$ we obtain via a result of Straubing, Thérien, and Thomas the characterization: $(FO + \mathrm{MOD}_q)[<](A^{\infty}) = \mathrm{SD}_{\mathbf{Sol}_q}(A^{\infty}).$
- The monoid decomposition along proper submonoids and local divisors leads a purely algebraic description using "local" Rees extension. Answering thereby a recent question of Almeida and Klíma about "bullet varieties".
- Straubing (1979) gave a description of the "star-free" closure
 of a variety in terms of Mal'cev products. Is there a way to
 use a characterization with prefix codes of bounded
 synchronization delay?

MERCI à Marcel-Paul

- The corresponding result for infinite words is more demanding.
- For $\mathbf{H} = \mathbf{Sol}_q$ we obtain via a result of Straubing, Thérien, and Thomas the characterization: $(FO + MOD_q)[<](A^{\infty}) = SD_{\mathbf{Sol}_q}(A^{\infty}).$
- The monoid decomposition along proper submonoids and local divisors leads a purely algebraic description using "local" Rees extension. Answering thereby a recent question of Almeida and Klíma about "bullet varieties".
- Straubing (1979) gave a description of the "star-free" closure
 of a variety in terms of Mal'cev products. Is there a way to
 use a characterization with prefix codes of bounded
 synchronization delay?

MERCI à Marcel-Paul et au LaBRI