Characterizing classes of regular languages using
prefix codes of bounded synchronization delay

Volker Diekert!

Universitat Stuttgart

MPS2106, Bordeaux, March 21st, 2016

in memoriam: Marcel-Paul Schiitzenberger

! Joint work with Tobias Walter

Classics of Schiitzenberger and a generalization

@ On finite monoids having only trivial subgroups.
Information and Control, 8:190-194, 1965.
SF(A*) = AP(AY)

Classics of Schiitzenberger and a generalization

@ On finite monoids having only trivial subgroups.
Information and Control, 8:190-194, 1965.
SF(A*) = AP(A*) = FO[<](A%)

Classics of Schiitzenberger and a generalization

@ On finite monoids having only trivial subgroups.
Information and Control, 8:190-194, 1965.
SF(A*) = AP(A*) = FO[<]|(A*) = LTL(A*)

Classics of Schiitzenberger and a generalization

@ On finite monoids having only trivial subgroups.
Information and Control, 8:190-194, 1965.
SF(A*) = AP(A*) = FO[<]|(A*) = LTL(A*)
@ Sur certaines opérations de fermeture dans les langages
rationnels.
In Symposia Mathematica, Vol. XV (Convegno di Informatica
Teorica, INDAM, Roma, 1973), pages 245-253, 1975.
SD(A*) = SF(A*) = AP(4*) = 1(A*)

Classics of Schiitzenberger and a generalization

@ On finite monoids having only trivial subgroups.
Information and Control, 8:190-194, 1965.
SF(A*) = AP(A*) = FO[<]|(A*) = LTL(A*)
@ Sur certaines opérations de fermeture dans les langages
rationnels.
In Symposia Mathematica, Vol. XV (Convegno di Informatica
Teorica, INDAM, Roma, 1973), pages 245-253, 1975.
SD(A*) = SF(A*) = AP(4*) = 1(A*)
© Sur les monoides finis dont les groupes sont commutatifs.
RAIRO, 8(R-1):55-61, 1974.
SDab(A*) = Ab(A")

Theorem (D. and Walter 2016)

SD(A®) = H(A%)

o A = finite alphabet

o A = finite alphabet
o A* = finite words, A¥ = infinite words, A = A* U A%.

Notation

e A = finite alphabet
o A* = finite words, A“ = infinite words, A = A* U A%.
@ Regular languages: finite subsets & closure under union,

concatenation, and Kleene-star
= recognizable by a finite monoid.

Notation

e A = finite alphabet
o A* = finite words, A“ = infinite words, A = A* U A%.
@ Regular languages: finite subsets & closure under union,

concatenation, and Kleene-star
= recognizable by a finite monoid.

@ Star-free languages: finite subsets & closure under union,
concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid.

Notation

e A = finite alphabet
o A* = finite words, A“ = infinite words, A = A* U A%.
@ Regular languages: finite subsets & closure under union,

concatenation, and Kleene-star
= recognizable by a finite monoid.

@ Star-free languages: finite subsets & closure under union,
concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid.

e h:A* — M recognizes L C A* if =1 (h(L)) = L.

Notation

e A = finite alphabet
o A* = finite words, A“ = infinite words, A = A* U A%.
@ Regular languages: finite subsets & closure under union,

concatenation, and Kleene-star
= recognizable by a finite monoid.

@ Star-free languages: finite subsets & closure under union,
concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid.

h: A* — M recognizes L C A* if "1 (h(L)) = L.

M is aperiodic if all subgroups are trivial.

Notation

A = finite alphabet
o A* = finite words, A“ = infinite words, A = A* U A%.
@ Regular languages: finite subsets & closure under union,
concatenation, and Kleene-star
= recognizable by a finite monoid.
@ Star-free languages: finite subsets & closure under union,
concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid.
e h:A* — M recognizes L C A* if =1 (h(L)) = L.
@ M is aperiodic if all subgroups are trivial.
e 1 = {1} = trivial group, Ab = finite abelian groups,
Sol = finite solvable groups, G = all finite groups,
Mon = all finite monoids.

Varieties

A variety means here a class of finite monoids which is closed
under finite direct products and divisors. A monoid NV is a divisor
of M if N is the homomorphic image of a submonoid of M.

1, Ab, Sol, G are varieties of groups.

If V is a variety, then we let

V(A*) ={L C A" | L is recognized by some M € V'}.
If H is a variety of groups, then

H = {M € Mon | all subgroups of M are in H}.

1= AP, G = Mon.

Prefix codes of bounded synchronization delay

K C AT is called prefix code if it is prefix-free. That is: u,uv € K
implies u = uw.

A prefix-free language K is a code since every word u € K* admits
a unique factorization v = uq - - - u with kK >0 and u; € K.

A prefix code K has bounded synchronization delay if for some
d € N and for all u,v,w € A* we have:
if wow e K* and v e K% then wv e K*.

Every B C A yields a prefix code with synchronization delay 0.
If c€ A\ B, then B*c is a prefix code with synchr. delay 1.

Application

Assume that Alice sends a message using a prefix code K with
synchronization delay d of the form

UV W] U2V2W2 UIVIW3 * * * UV W
with u;, v;, w; € K*, but Bob receives, say due to noise, only a
subsequence:

?vlwl? ’1)2'[1}2? v3ws - - -?vkwk

such that v; € K¢ Then Bob can recover a subsequence of the
original message corresponding to the subsequence

(w1, wa, w3, .., wy) € (K*)F.

H = a variety of groups

Let K € H(A*) be a prefix code of bounded synchronization delay.
Then: K* € H(A*).

| A

Proof.
We have ‘ '
ANK* = (KFAA*\ K™ AY).
0<i
Now, let d be the synchronization delay of K. Then we can write
A \K* = A"KYAA\ KA U |] (K'AA"\ K7 AY).
0<i<d

A\

Group languages and generalized group languages

Let GG be a finite group and C a class of languages.

L C A* is a group language for G, if L = ~y~1(1) for some
homomorphism ~ : A* — G.

Group languages and generalized group languages

Let GG be a finite group and C a class of languages.

L C A* is a group language for G, if L = ~y~1(1) for some
homomorphism ~ : A* — G.

L C A* is a generalized group language for GG over C, if
L = ~71(1) for some homomorphism ~ : K* — G such that

@ K C AT is a prefix code of bounded synchronization delay,

Group languages and generalized group languages

Let GG be a finite group and C a class of languages.

L C A* is a group language for G, if L = ~y~1(1) for some
homomorphism ~ : A* — G.

L C A* is a generalized group language for GG over C, if

L = ~71(1) for some homomorphism ~ : K* — G such that
@ K C AT is a prefix code of bounded synchronization delay,
Q@ (v Hg)nK)eCforallgeG.

Group languages and generalized group languages

Let GG be a finite group and C a class of languages.

L C A* is a group language for G, if L = ~y~1(1) for some
homomorphism ~ : A* — G.

L C A* is a generalized group language for GG over C, if
L = ~71(1) for some homomorphism ~ : K* — G such that

@ K C AT is a prefix code of bounded synchronization delay,
Q@ ("(9nK)eCforallged.

Proposition (Schiitzenberger (1974))

Let L C A* be a generalized group language for G over H(AY)
with G € H. Then we have L € H(A*).

Schiitzenberger's SDy classes

By SDyz(A*) we denote the set of regular languages which is
inductively defined as follows.

Schiitzenberger's SDy classes

By SDyz(A*) we denote the set of regular languages which is
inductively defined as follows.

O Finite subsets of A* are in SDg(A¥).

Schiitzenberger's SDy classes

By SDyz(A*) we denote the set of regular languages which is
inductively defined as follows.

O Finite subsets of A* are in SDg(A¥).
Q If L,K € SDyy(A*), then LUK, L - K € SDg(A¥)

Schiitzenberger's SDy classes

By SDi(A*) we denote the set of regular languages which is
inductively defined as follows.

O Finite subsets of A* are in SDg(A¥).

Q If L,K € SDyy(A*), then LUK, L - K € SDg(A¥)

@ If L C A* is a generalized group language for G over
SDu(A*) with G € H, then L € SDi(A*)

Schiitzenberger's SDy classes

By SDyz(A*) we denote the set of regular languages which is
inductively defined as follows.

O Finite subsets of A* are in SDg(A¥).

Q If L,K € SDyy(A*), then LUK, L - K € SDg(A¥)

@ If L C A* is a generalized group language for G over
SDi(A*) with G € H, then L € SDy(A*)

Proposition (Schiitzenberger (1974) reformulated)

IN
o

SDg(A*) (A%)

Schiitzenberger's SDy classes

By SDyz(A*) we denote the set of regular languages which is
inductively defined as follows.

O Finite subsets of A* are in SDg(A¥).

Q If L,K € SDyy(A*), then LUK, L - K € SDg(A¥)

@ If L C A* is a generalized group language for G over
SDi(A*) with G € H, then L € SDy(A*)

Proposition (Schiitzenberger (1974) reformulated)

SDg(A*) € H(A")

Theorem (Schiitzenberger (1975) and (1974))

SD1(A*) = T(A*) = AP(A*) and SD ap(A*) = Ab(A*)

Extensions of Schiitzenberger's results (1965 — 1975)

@ Perrin (1984) generalized SF(A*) = AP(A*) to
SF(A¥) = AP(AY), hence he obtained

SF(A®) = AP(A%).

@ D. and Kufleitner (2013) generalized SD1(A*) = AP(A*) to
SD1(AY) = AP(A“), hence we obtained

SD1(A%) = AP(A®).

© D. and Walter (2016) generalized SDpg(A*) C H(A*) and

SDap(A*) = Ab(A*) to SDi(A*) = H(A*) and
SDg(A“) = H(A¥), hence we obtained

SD(A%) = H(A®).

Local divisor technique

The local divisor technique was established in finite semigroup
theory around 2004 as a tool to simplify inductive proofs. (In
associative algebra the idea is due to Kurt Meyberg 1972.)

The definition is a follows: Let M be a monoid and ¢ € M.
Consider the set ¢cM N Mc¢ and define a new multiplication

xTCocy = xey.
Then M. = (¢cM N Mec,o,c) is monoid: the local divisor at c.

Facts

@ M\:{x € M| cxe€ Mc} — M, given by \o(x) =cz is a
surjective homomorphism. Hence, M, is a divisor of M.

Local divisor technique

The local divisor technique was established in finite semigroup
theory around 2004 as a tool to simplify inductive proofs. (In
associative algebra the idea is due to Kurt Meyberg 1972.)

The definition is a follows: Let M be a monoid and ¢ € M.
Consider the set ¢cM N Mc¢ and define a new multiplication

xTCocy = xey.
Then M. = (¢cM N Mec,o,c) is monoid: the local divisor at c.

Facts

@ M\:{x € M| cxe€ Mc} — M, given by \o(x) =cz is a
surjective homomorphism. Hence, M, is a divisor of M.

@ If cis a unit, then M, is isomorphic to M.

Local divisor technique

The local divisor technique was established in finite semigroup
theory around 2004 as a tool to simplify inductive proofs. (In
associative algebra the idea is due to Kurt Meyberg 1972.)

The definition is a follows: Let M be a monoid and ¢ € M.
Consider the set ¢cM N Mc¢ and define a new multiplication

xTCocy = xey.
Then M. = (¢cM N Mec,o,c) is monoid: the local divisor at c.

Facts

@ M\:{x € M| cxe€ Mc} — M, given by \o(x) =cz is a
surjective homomorphism. Hence, M, is a divisor of M.

@ If cis a unit, then M, is isomorphic to M.

o If ¢ = 2, then M, is the standard “local monoid”.

Local divisor technique

The local divisor technique was established in finite semigroup
theory around 2004 as a tool to simplify inductive proofs. (In
associative algebra the idea is due to Kurt Meyberg 1972.)

The definition is a follows: Let M be a monoid and ¢ € M.
Consider the set ¢cM N Mc¢ and define a new multiplication

xTCocy = xey.
Then M. = (¢cM N Mec,o,c) is monoid: the local divisor at c.

Facts

@ M\:{x € M| cxe€ Mc} — M, given by \o(x) =cz is a
surjective homomorphism. Hence, M, is a divisor of M.

@ If cis a unit, then M, is isomorphic to M.
o If ¢ = 2, then M, is the standard “local monoid”.

@ If ciis not a unit, then 1 ¢ M,. Hence, if c is not a unit and if
M is finite, then |M.| < |M].

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
@ : A* — M for finite monoids M € V.

@ Base for the induction: prove P for finite groups G € V.

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
@ : A* — M for finite monoids M € V.

@ Base for the induction: prove P for finite groups G € V.

e If M is not a group choose a letter ¢ € A such that ¢(c) € M
is not a unit. Define B= A\ {c}.

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
@ : A* — M for finite monoids M € V.

@ Base for the induction: prove P for finite groups G € V.

e If M is not a group choose a letter ¢ € A such that ¢(c) € M
is not a unit. Define B= A\ {c}.

@ P holds for p|p- : B* — M by induction because |B| < |A|.
(Baby-step)

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
@ : A* — M for finite monoids M € V.

@ Base for the induction: prove P for finite groups G € V.

e If M is not a group choose a letter ¢ € A such that ¢(c) € M
is not a unit. Define B= A\ {c}.

@ P holds for p|p- : B* — M by induction because |B| < |A|.
(Baby-step)

@ P holds for ¢ : T — M., for every finite T" by induction
because ‘M@(c)‘ < |M]. (Giant-step)

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
@ : A* — M for finite monoids M € V.

@ Base for the induction: prove P for finite groups G € V.

e If M is not a group choose a letter ¢ € A such that ¢(c) € M
is not a unit. Define B= A\ {c}.

@ P holds for p|p- : B* — M by induction because |B| < |A|.
(Baby-step)

@ P holds for ¢ : T — M., for every finite T" by induction
because ‘M@(c)‘ < |M]. (Giant-step)

@ B*cis a (prefix) code (of delay 1) and every mapping
o : B*c — T can be extended to a homomorphism
o:(B*)t = A*c— TT.

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
@ : A* — M for finite monoids M € V.

@ Base for the induction: prove P for finite groups G € V.

e If M is not a group choose a letter ¢ € A such that ¢(c) € M
is not a unit. Define B= A\ {c}.

@ P holds for p|p- : B* — M by induction because |B| < |A|.
(Baby-step)

@ P holds for ¢ : T — M., for every finite T" by induction
because ‘M@(c)‘ < |M]. (Giant-step)

@ B*cis a (prefix) code (of delay 1) and every mapping
o : B*c — T can be extended to a homomorphism
o:(B*)t = A*c— TT.

@ One can choose T and o such that

plewe) = o (we)

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
@ : A* — M for finite monoids M € V.

@ Base for the induction: prove P for finite groups G € V.

e If M is not a group choose a letter ¢ € A such that ¢(c) € M
is not a unit. Define B= A\ {c}.

@ P holds for p|p- : B* — M by induction because |B| < |A|.
(Baby-step)

@ P holds for ¢ : T — M., for every finite T" by induction
because ‘M@(c)‘ < |M]. (Giant-step)

@ B*cis a (prefix) code (of delay 1) and every mapping
o : B*c — T can be extended to a homomorphism
o:(B*)t = A*c— TT.

@ One can choose T and o such that

plewe) = o (we)

and then (hopefully) a miracle happens:

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
@ : A* — M for finite monoids M € V.

@ Base for the induction: prove P for finite groups G € V.

e If M is not a group choose a letter ¢ € A such that ¢(c) € M
is not a unit. Define B= A\ {c}.

@ P holds for p|p- : B* — M by induction because |B| < |A|.
(Baby-step)

@ P holds for ¢ : T — M., for every finite T" by induction
because ‘M@(c)‘ < |M]. (Giant-step)

@ B*cis a (prefix) code (of delay 1) and every mapping
o : B*c — T can be extended to a homomorphism
o:(B*)t = A*c— TT.

@ One can choose T and o such that

p(cwe) = po(we)
and then (hopefully) a miracle happens: P holds for .

Example for local divisor decomposition

M= {a,b}* x {§,0}" with a zero 0 modulo defining relations:
2= =ab=ba=0,a0 =a, doc=06%06>=1,and 02 = 1.
The subgroup generated by § and o is the symmetric group Gg; it
is solvable but not abelian.

M

/\

Mla, o, 6] M, ~ 63U {0}

SN PN

S3 Mla,0,0]lq ~7Z/27 S3 (Mp)o ~ {1}

Applications of the local divisor technique

o Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

Applications of the local divisor technique

o Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

@ "One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

Applications of the local divisor technique

o Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

@ "One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

@ Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

Applications of the local divisor technique

o Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

@ "One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

@ Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

@ Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

Applications of the local divisor technique

o Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

@ "One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

@ Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

@ Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

@ Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

Applications of the local divisor technique

o Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

@ "One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

@ Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

@ Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

@ Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

o SD(AY) = AP(AY).
D. and Kufleitner (2013)

Applications of the local divisor technique

o Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

@ "One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

@ Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

@ Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

@ Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

o SD(AY) = AP(AY).
D. and Kufleitner (2013)

@ New interpretation of Green's Lemma: Schiitzenberger
categories. Costa and Steinberg (2014)

Applications of the local divisor technique

o Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

@ "One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

@ Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

@ Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

@ Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

o SD(AY) = AP(AY).
D. and Kufleitner (2013)

@ New interpretation of Green's Lemma: Schiitzenberger
categories. Costa and Steinberg (2014)

@ SDy(A>) = H(A>). D. and Walter (2016)

Main steps in showing H(A*) C SDg(A*)

Starting point: ¢ : A* — M, all subgroups of M are divisors of
G € H. Wlog. M is not a group. Choose ¢ € A such that ¢(c) is
not a unit. We write [w] = ¢~ '(w) and T' = {[u] | v € B*}
becomes a finite alphabet.

Let M. = M) the local divisor at y(c). Define

T — M., [u] — p(cuc).
Then

P([ua] - [un]) = pleuic) o - - o p(cunc)
= p(cuic---cupc) = p(c) - p(urc- - - upc).

Define o : (B*c)* — T* with o(u.) = [u]. Then

Yw € A* : p(cwe) = Yo (we).
“Essentially” it remains to show

o~ (SDg(T*)) C SDG(A").

We have to show 071 (K) € SDg(A*) for all K € SDg(T*). This
is done by structural induction.

The key observation is;

o' (SD¢(T™*)) € SDa(A¥)

We have to show o~ (K) € SDg(A*) for all K € SDg(T*). This
is done by structural induction.

The key observation is; if K € SDg(T*) be a prefix code of
synchronization delay d, then o~ !(K) is a prefix code of
synchronization delay d + 1. (Exercise.)

@ The corresponding result for infinite words is more demanding.

Concluding remarks

@ The corresponding result for infinite words is more demanding.

e For H = Sol, we obtain via a result of Straubing, Thérien,
and Thomas the characterization:
(FO 4+ MOD,)[<](A>®) = SDsol, (A>).

Concluding remarks

@ The corresponding result for infinite words is more demanding.

e For H = Sol, we obtain via a result of Straubing, Thérien,
and Thomas the characterization:

(FO +MOD,)[<]|(A%°) = SDgel, (A*°).

@ The monoid decomposition along proper submonoids and
local divisors leads a purely algebraic description using “local”
Rees extension. Answering thereby a recent question of
Almeida and Klima about “bullet varieties”.

Concluding remarks

@ The corresponding result for infinite words is more demanding.

e For H = Sol, we obtain via a result of Straubing, Thérien,
and Thomas the characterization:

(FO +MOD,)[<]|(A%°) = SDgel, (A*°).

@ The monoid decomposition along proper submonoids and
local divisors leads a purely algebraic description using “local”
Rees extension. Answering thereby a recent question of
Almeida and Klima about “bullet varieties”.

e Straubing (1979) gave a description of the “star-free” closure
of a variety in terms of Mal’cev products. Is there a way to
use a characterization with prefix codes of bounded
synchronization delay?

Concluding remarks

@ The corresponding result for infinite words is more demanding.

e For H = Sol, we obtain via a result of Straubing, Thérien,
and Thomas the characterization:

(FO +MOD,)[<]|(A%°) = SDgel, (A*°).

@ The monoid decomposition along proper submonoids and
local divisors leads a purely algebraic description using “local”
Rees extension. Answering thereby a recent question of
Almeida and Klima about “bullet varieties”.

e Straubing (1979) gave a description of the “star-free” closure
of a variety in terms of Mal’cev products. Is there a way to
use a characterization with prefix codes of bounded
synchronization delay?

MERCI

Concluding remarks

@ The corresponding result for infinite words is more demanding.

e For H = Sol, we obtain via a result of Straubing, Thérien,
and Thomas the characterization:

(FO +MOD,)[<]|(A%°) = SDgel, (A*°).

@ The monoid decomposition along proper submonoids and
local divisors leads a purely algebraic description using “local”
Rees extension. Answering thereby a recent question of
Almeida and Klima about “bullet varieties”.

e Straubing (1979) gave a description of the “star-free” closure
of a variety in terms of Mal’cev products. Is there a way to
use a characterization with prefix codes of bounded
synchronization delay?

MERCI a Marcel-Paul

Concluding remarks

@ The corresponding result for infinite words is more demanding.

e For H = Sol, we obtain via a result of Straubing, Thérien,
and Thomas the characterization:

(FO +MOD,)[<]|(A%°) = SDgel, (A*°).

@ The monoid decomposition along proper submonoids and
local divisors leads a purely algebraic description using “local”
Rees extension. Answering thereby a recent question of
Almeida and Klima about “bullet varieties”.

e Straubing (1979) gave a description of the “star-free” closure
of a variety in terms of Mal’cev products. Is there a way to
use a characterization with prefix codes of bounded
synchronization delay?

MERCI a Marcel-Paul et au LaBRI

