
Characterizing classes of regular languages using
prefix codes of bounded synchronization delay

Volker Diekert1

Universität Stuttgart

MPS2106, Bordeaux, March 21st, 2016

in memoriam: Marcel-Paul Schützenberger

1Joint work with Tobias Walter

Classics of Schützenberger and a generalization

1 On finite monoids having only trivial subgroups.
Information and Control, 8:190–194, 1965.

SF(A∗) = AP(A∗)

= FO[<](A∗) = LTL(A∗)

2 Sur certaines opérations de fermeture dans les langages
rationnels.
In Symposia Mathematica, Vol. XV (Convegno di Informatica
Teorica, INDAM, Roma, 1973), pages 245–253, 1975.

SD(A∗) = SF(A∗) = AP(A∗) = 1(A∗)

3 Sur les monoides finis dont les groupes sont commutatifs.
RAIRO, 8(R-1):55–61, 1974.

SDAb(A
∗) = Ab(A∗)

Theorem (D. and Walter 2016)

SDH(A∞) = H(A∞)

Classics of Schützenberger and a generalization

1 On finite monoids having only trivial subgroups.
Information and Control, 8:190–194, 1965.

SF(A∗) = AP(A∗) = FO[<](A∗)

= LTL(A∗)

2 Sur certaines opérations de fermeture dans les langages
rationnels.
In Symposia Mathematica, Vol. XV (Convegno di Informatica
Teorica, INDAM, Roma, 1973), pages 245–253, 1975.

SD(A∗) = SF(A∗) = AP(A∗) = 1(A∗)

3 Sur les monoides finis dont les groupes sont commutatifs.
RAIRO, 8(R-1):55–61, 1974.

SDAb(A
∗) = Ab(A∗)

Theorem (D. and Walter 2016)

SDH(A∞) = H(A∞)

Classics of Schützenberger and a generalization

1 On finite monoids having only trivial subgroups.
Information and Control, 8:190–194, 1965.

SF(A∗) = AP(A∗) = FO[<](A∗) = LTL(A∗)

2 Sur certaines opérations de fermeture dans les langages
rationnels.
In Symposia Mathematica, Vol. XV (Convegno di Informatica
Teorica, INDAM, Roma, 1973), pages 245–253, 1975.

SD(A∗) = SF(A∗) = AP(A∗) = 1(A∗)

3 Sur les monoides finis dont les groupes sont commutatifs.
RAIRO, 8(R-1):55–61, 1974.

SDAb(A
∗) = Ab(A∗)

Theorem (D. and Walter 2016)

SDH(A∞) = H(A∞)

Classics of Schützenberger and a generalization

1 On finite monoids having only trivial subgroups.
Information and Control, 8:190–194, 1965.

SF(A∗) = AP(A∗) = FO[<](A∗) = LTL(A∗)

2 Sur certaines opérations de fermeture dans les langages
rationnels.
In Symposia Mathematica, Vol. XV (Convegno di Informatica
Teorica, INDAM, Roma, 1973), pages 245–253, 1975.

SD(A∗) = SF(A∗) = AP(A∗) = 1(A∗)

3 Sur les monoides finis dont les groupes sont commutatifs.
RAIRO, 8(R-1):55–61, 1974.

SDAb(A
∗) = Ab(A∗)

Theorem (D. and Walter 2016)

SDH(A∞) = H(A∞)

Classics of Schützenberger and a generalization

1 On finite monoids having only trivial subgroups.
Information and Control, 8:190–194, 1965.

SF(A∗) = AP(A∗) = FO[<](A∗) = LTL(A∗)

2 Sur certaines opérations de fermeture dans les langages
rationnels.
In Symposia Mathematica, Vol. XV (Convegno di Informatica
Teorica, INDAM, Roma, 1973), pages 245–253, 1975.

SD(A∗) = SF(A∗) = AP(A∗) = 1(A∗)

3 Sur les monoides finis dont les groupes sont commutatifs.
RAIRO, 8(R-1):55–61, 1974.

SDAb(A
∗) = Ab(A∗)

Theorem (D. and Walter 2016)

SDH(A∞) = H(A∞)

Notation

A = finite alphabet

A∗ = finite words, Aω = infinite words, A∞ = A∗ ∪Aω.

Regular languages: finite subsets & closure under union,
concatenation, and Kleene-star
= recognizable by a finite monoid.

Star-free languages: finite subsets & closure under union,
concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid.

h : A∗ →M recognizes L ⊆ A∗ if h−1(h(L)) = L.

M is aperiodic if all subgroups are trivial.

1 = {1} = trivial group, Ab = finite abelian groups,
Sol = finite solvable groups, G = all finite groups,
Mon = all finite monoids.

Notation

A = finite alphabet

A∗ = finite words, Aω = infinite words, A∞ = A∗ ∪Aω.

Regular languages: finite subsets & closure under union,
concatenation, and Kleene-star
= recognizable by a finite monoid.

Star-free languages: finite subsets & closure under union,
concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid.

h : A∗ →M recognizes L ⊆ A∗ if h−1(h(L)) = L.

M is aperiodic if all subgroups are trivial.

1 = {1} = trivial group, Ab = finite abelian groups,
Sol = finite solvable groups, G = all finite groups,
Mon = all finite monoids.

Notation

A = finite alphabet

A∗ = finite words, Aω = infinite words, A∞ = A∗ ∪Aω.

Regular languages: finite subsets & closure under union,
concatenation, and Kleene-star
= recognizable by a finite monoid.

Star-free languages: finite subsets & closure under union,
concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid.

h : A∗ →M recognizes L ⊆ A∗ if h−1(h(L)) = L.

M is aperiodic if all subgroups are trivial.

1 = {1} = trivial group, Ab = finite abelian groups,
Sol = finite solvable groups, G = all finite groups,
Mon = all finite monoids.

Notation

A = finite alphabet

A∗ = finite words, Aω = infinite words, A∞ = A∗ ∪Aω.

Regular languages: finite subsets & closure under union,
concatenation, and Kleene-star
= recognizable by a finite monoid.

Star-free languages: finite subsets & closure under union,
concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid.

h : A∗ →M recognizes L ⊆ A∗ if h−1(h(L)) = L.

M is aperiodic if all subgroups are trivial.

1 = {1} = trivial group, Ab = finite abelian groups,
Sol = finite solvable groups, G = all finite groups,
Mon = all finite monoids.

Notation

A = finite alphabet

A∗ = finite words, Aω = infinite words, A∞ = A∗ ∪Aω.

Regular languages: finite subsets & closure under union,
concatenation, and Kleene-star
= recognizable by a finite monoid.

Star-free languages: finite subsets & closure under union,
concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid.

h : A∗ →M recognizes L ⊆ A∗ if h−1(h(L)) = L.

M is aperiodic if all subgroups are trivial.

1 = {1} = trivial group, Ab = finite abelian groups,
Sol = finite solvable groups, G = all finite groups,
Mon = all finite monoids.

Notation

A = finite alphabet

A∗ = finite words, Aω = infinite words, A∞ = A∗ ∪Aω.

Regular languages: finite subsets & closure under union,
concatenation, and Kleene-star
= recognizable by a finite monoid.

Star-free languages: finite subsets & closure under union,
concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid.

h : A∗ →M recognizes L ⊆ A∗ if h−1(h(L)) = L.

M is aperiodic if all subgroups are trivial.

1 = {1} = trivial group, Ab = finite abelian groups,
Sol = finite solvable groups, G = all finite groups,
Mon = all finite monoids.

Notation

A = finite alphabet

A∗ = finite words, Aω = infinite words, A∞ = A∗ ∪Aω.

Regular languages: finite subsets & closure under union,
concatenation, and Kleene-star
= recognizable by a finite monoid.

Star-free languages: finite subsets & closure under union,
concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid.

h : A∗ →M recognizes L ⊆ A∗ if h−1(h(L)) = L.

M is aperiodic if all subgroups are trivial.

1 = {1} = trivial group, Ab = finite abelian groups,
Sol = finite solvable groups, G = all finite groups,
Mon = all finite monoids.

Varieties

A variety means here a class of finite monoids which is closed
under finite direct products and divisors. A monoid N is a divisor
of M if N is the homomorphic image of a submonoid of M .

Example

1, Ab, Sol, G are varieties of groups.

If V is a variety, then we let

V(A∗) = {L ⊆ A∗ | L is recognized by some M ∈ V } .

If H is a variety of groups, then

H = {M ∈Mon | all subgroups of M are in H} .

Example

1 = AP, G = Mon.

Prefix codes of bounded synchronization delay

K ⊆ A+ is called prefix code if it is prefix-free. That is: u, uv ∈ K
implies u = uv.

A prefix-free language K is a code since every word u ∈ K∗ admits
a unique factorization u = u1 · · ·uk with k ≥ 0 and ui ∈ K.

A prefix code K has bounded synchronization delay if for some
d ∈ N and for all u, v, w ∈ A∗ we have:
if uvw ∈ K∗ and v ∈ Kd, then uv ∈ K∗.

Example

Every B ⊆ A yields a prefix code with synchronization delay 0.
If c ∈ A \B, then B∗c is a prefix code with synchr. delay 1.

Application

Assume that Alice sends a message using a prefix code K with
synchronization delay d of the form

u1v1w1 u2v2w2 u3v3w3 · · ·ukvkwk

with ui, vi, wi ∈ K∗, but Bob receives, say due to noise, only a
subsequence:

?v1w1? v2w2? v3w3 · · ·?vkwk

such that vi ∈ Kd. Then Bob can recover a subsequence of the
original message corresponding to the subsequence

(w1, w2, w3, . . . , wk) ∈ (K∗)k.

H = a variety of groups

Lemma

Let K ∈ H(A∗) be a prefix code of bounded synchronization delay.
Then: K∗ ∈ H(A∗).

Proof.

We have
A∗ \K∗ =

⋃
0≤i

(
KiAA∗ \Ki+1A∗

)
.

Now, let d be the synchronization delay of K. Then we can write

A∗ \K∗ = A∗Kd(AA∗ \KA∗) ∪
⋃

0≤i<d

(KiAA∗ \Ki+1A∗).

Group languages and generalized group languages

Let G be a finite group and C a class of languages.

L ⊆ A∗ is a group language for G, if L = γ−1(1) for some
homomorphism γ : A∗ → G.

L ⊆ A∗ is a generalized group language for G over C, if
L = γ−1(1) for some homomorphism γ : K∗ → G such that

1 K ⊆ A+ is a prefix code of bounded synchronization delay,

2 (γ−1(g) ∩K) ∈ C for all g ∈ G.

Proposition (Schützenberger (1974))

Let L ⊆ A∗ be a generalized group language for G over H(A∗)
with G ∈ H. Then we have L ∈ H(A∗).

Group languages and generalized group languages

Let G be a finite group and C a class of languages.

L ⊆ A∗ is a group language for G, if L = γ−1(1) for some
homomorphism γ : A∗ → G.

L ⊆ A∗ is a generalized group language for G over C, if
L = γ−1(1) for some homomorphism γ : K∗ → G such that

1 K ⊆ A+ is a prefix code of bounded synchronization delay,

2 (γ−1(g) ∩K) ∈ C for all g ∈ G.

Proposition (Schützenberger (1974))

Let L ⊆ A∗ be a generalized group language for G over H(A∗)
with G ∈ H. Then we have L ∈ H(A∗).

Group languages and generalized group languages

Let G be a finite group and C a class of languages.

L ⊆ A∗ is a group language for G, if L = γ−1(1) for some
homomorphism γ : A∗ → G.

L ⊆ A∗ is a generalized group language for G over C, if
L = γ−1(1) for some homomorphism γ : K∗ → G such that

1 K ⊆ A+ is a prefix code of bounded synchronization delay,

2 (γ−1(g) ∩K) ∈ C for all g ∈ G.

Proposition (Schützenberger (1974))

Let L ⊆ A∗ be a generalized group language for G over H(A∗)
with G ∈ H. Then we have L ∈ H(A∗).

Group languages and generalized group languages

Let G be a finite group and C a class of languages.

L ⊆ A∗ is a group language for G, if L = γ−1(1) for some
homomorphism γ : A∗ → G.

L ⊆ A∗ is a generalized group language for G over C, if
L = γ−1(1) for some homomorphism γ : K∗ → G such that

1 K ⊆ A+ is a prefix code of bounded synchronization delay,

2 (γ−1(g) ∩K) ∈ C for all g ∈ G.

Proposition (Schützenberger (1974))

Let L ⊆ A∗ be a generalized group language for G over H(A∗)
with G ∈ H. Then we have L ∈ H(A∗).

Schützenberger’s SDH classes

By SDH(A∗) we denote the set of regular languages which is
inductively defined as follows.

1 Finite subsets of A∗ are in SDH(A∗).

2 If L,K ∈ SDH(A∗), then L ∪K,L ·K ∈ SDH(A∗)

3 If L ⊆ A∗ is a generalized group language for G over
SDH(A∗) with G ∈ H, then L ∈ SDH(A∗)

Proposition (Schützenberger (1974) reformulated)

SDH(A∗) ⊆ H(A∗)

Theorem (Schützenberger (1975) and (1974))

SD1(A
∗) = 1(A∗) = AP(A∗) and SDAb(A

∗) = Ab(A∗)

Schützenberger’s SDH classes

By SDH(A∗) we denote the set of regular languages which is
inductively defined as follows.

1 Finite subsets of A∗ are in SDH(A∗).

2 If L,K ∈ SDH(A∗), then L ∪K,L ·K ∈ SDH(A∗)

3 If L ⊆ A∗ is a generalized group language for G over
SDH(A∗) with G ∈ H, then L ∈ SDH(A∗)

Proposition (Schützenberger (1974) reformulated)

SDH(A∗) ⊆ H(A∗)

Theorem (Schützenberger (1975) and (1974))

SD1(A
∗) = 1(A∗) = AP(A∗) and SDAb(A

∗) = Ab(A∗)

Schützenberger’s SDH classes

By SDH(A∗) we denote the set of regular languages which is
inductively defined as follows.

1 Finite subsets of A∗ are in SDH(A∗).

2 If L,K ∈ SDH(A∗), then L ∪K,L ·K ∈ SDH(A∗)

3 If L ⊆ A∗ is a generalized group language for G over
SDH(A∗) with G ∈ H, then L ∈ SDH(A∗)

Proposition (Schützenberger (1974) reformulated)

SDH(A∗) ⊆ H(A∗)

Theorem (Schützenberger (1975) and (1974))

SD1(A
∗) = 1(A∗) = AP(A∗) and SDAb(A

∗) = Ab(A∗)

Schützenberger’s SDH classes

By SDH(A∗) we denote the set of regular languages which is
inductively defined as follows.

1 Finite subsets of A∗ are in SDH(A∗).

2 If L,K ∈ SDH(A∗), then L ∪K,L ·K ∈ SDH(A∗)

3 If L ⊆ A∗ is a generalized group language for G over
SDH(A∗) with G ∈ H, then L ∈ SDH(A∗)

Proposition (Schützenberger (1974) reformulated)

SDH(A∗) ⊆ H(A∗)

Theorem (Schützenberger (1975) and (1974))

SD1(A
∗) = 1(A∗) = AP(A∗) and SDAb(A

∗) = Ab(A∗)

Schützenberger’s SDH classes

By SDH(A∗) we denote the set of regular languages which is
inductively defined as follows.

1 Finite subsets of A∗ are in SDH(A∗).

2 If L,K ∈ SDH(A∗), then L ∪K,L ·K ∈ SDH(A∗)

3 If L ⊆ A∗ is a generalized group language for G over
SDH(A∗) with G ∈ H, then L ∈ SDH(A∗)

Proposition (Schützenberger (1974) reformulated)

SDH(A∗) ⊆ H(A∗)

Theorem (Schützenberger (1975) and (1974))

SD1(A
∗) = 1(A∗) = AP(A∗) and SDAb(A

∗) = Ab(A∗)

Schützenberger’s SDH classes

By SDH(A∗) we denote the set of regular languages which is
inductively defined as follows.

1 Finite subsets of A∗ are in SDH(A∗).

2 If L,K ∈ SDH(A∗), then L ∪K,L ·K ∈ SDH(A∗)

3 If L ⊆ A∗ is a generalized group language for G over
SDH(A∗) with G ∈ H, then L ∈ SDH(A∗)

Proposition (Schützenberger (1974) reformulated)

SDH(A∗) ⊆ H(A∗)

Theorem (Schützenberger (1975) and (1974))

SD1(A
∗) = 1(A∗) = AP(A∗) and SDAb(A

∗) = Ab(A∗)

Extensions of Schützenberger’s results (1965 – 1975)

1 Perrin (1984) generalized SF(A∗) = AP(A∗) to
SF(Aω) = AP(Aω), hence he obtained

SF(A∞) = AP(A∞).

2 D. and Kufleitner (2013) generalized SD1(A
∗) = AP(A∗) to

SD1(A
ω) = AP(Aω), hence we obtained

SD1(A
∞) = AP(A∞).

3 D. and Walter (2016) generalized SDH(A∗) ⊆ H(A∗) and
SDAb(A

∗) = Ab(A∗) to SDH(A∗) = H(A∗) and
SDH(Aω) = H(Aω), hence we obtained

SDH(A∞) = H(A∞).

Local divisor technique

The local divisor technique was established in finite semigroup
theory around 2004 as a tool to simplify inductive proofs. (In
associative algebra the idea is due to Kurt Meyberg 1972.)

The definition is a follows: Let M be a monoid and c ∈M .
Consider the set cM ∩Mc and define a new multiplication

xc ◦ cy = xcy.

Then Mc = (cM ∩Mc, ◦, c) is monoid: the local divisor at c.

Facts

λc : {x ∈M | cx ∈Mc} →Mc given by λc(x) = cx is a
surjective homomorphism. Hence, Mc is a divisor of M .

If c is a unit, then Mc is isomorphic to M .

If c = c2, then Mc is the standard “local monoid”.

If c is not a unit, then 1 /∈Mc. Hence, if c is not a unit and if
M is finite, then |Mc| < |M |.

Local divisor technique

The local divisor technique was established in finite semigroup
theory around 2004 as a tool to simplify inductive proofs. (In
associative algebra the idea is due to Kurt Meyberg 1972.)

The definition is a follows: Let M be a monoid and c ∈M .
Consider the set cM ∩Mc and define a new multiplication

xc ◦ cy = xcy.

Then Mc = (cM ∩Mc, ◦, c) is monoid: the local divisor at c.

Facts

λc : {x ∈M | cx ∈Mc} →Mc given by λc(x) = cx is a
surjective homomorphism. Hence, Mc is a divisor of M .

If c is a unit, then Mc is isomorphic to M .

If c = c2, then Mc is the standard “local monoid”.

If c is not a unit, then 1 /∈Mc. Hence, if c is not a unit and if
M is finite, then |Mc| < |M |.

Local divisor technique

The local divisor technique was established in finite semigroup
theory around 2004 as a tool to simplify inductive proofs. (In
associative algebra the idea is due to Kurt Meyberg 1972.)

The definition is a follows: Let M be a monoid and c ∈M .
Consider the set cM ∩Mc and define a new multiplication

xc ◦ cy = xcy.

Then Mc = (cM ∩Mc, ◦, c) is monoid: the local divisor at c.

Facts

λc : {x ∈M | cx ∈Mc} →Mc given by λc(x) = cx is a
surjective homomorphism. Hence, Mc is a divisor of M .

If c is a unit, then Mc is isomorphic to M .

If c = c2, then Mc is the standard “local monoid”.

If c is not a unit, then 1 /∈Mc. Hence, if c is not a unit and if
M is finite, then |Mc| < |M |.

Local divisor technique

The local divisor technique was established in finite semigroup
theory around 2004 as a tool to simplify inductive proofs. (In
associative algebra the idea is due to Kurt Meyberg 1972.)

The definition is a follows: Let M be a monoid and c ∈M .
Consider the set cM ∩Mc and define a new multiplication

xc ◦ cy = xcy.

Then Mc = (cM ∩Mc, ◦, c) is monoid: the local divisor at c.

Facts

λc : {x ∈M | cx ∈Mc} →Mc given by λc(x) = cx is a
surjective homomorphism. Hence, Mc is a divisor of M .

If c is a unit, then Mc is isomorphic to M .

If c = c2, then Mc is the standard “local monoid”.

If c is not a unit, then 1 /∈Mc. Hence, if c is not a unit and if
M is finite, then |Mc| < |M |.

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
ϕ : A∗ →M for finite monoids M ∈ V.

Base for the induction: prove P for finite groups G ∈ V.

If M is not a group choose a letter c ∈ A such that ϕ(c) ∈M
is not a unit. Define B = A \ {c}.
P holds for ϕ|B∗ : B∗ →M by induction because |B| < |A|.
(Baby-step)

P holds for ψ : T ∗ →Mϕ(c) for every finite T by induction
because

∣∣Mϕ(c)

∣∣ < |M |. (Giant-step)

B∗c is a (prefix) code (of delay 1) and every mapping
σ : B∗c→ T can be extended to a homomorphism
σ : (B∗c)+ = A∗c→ T+.

One can choose T and σ such that

ϕ(cwc) = ψσ(wc)

and then (hopefully) a miracle happens: P holds for ϕ.

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
ϕ : A∗ →M for finite monoids M ∈ V.

Base for the induction: prove P for finite groups G ∈ V.

If M is not a group choose a letter c ∈ A such that ϕ(c) ∈M
is not a unit. Define B = A \ {c}.

P holds for ϕ|B∗ : B∗ →M by induction because |B| < |A|.
(Baby-step)

P holds for ψ : T ∗ →Mϕ(c) for every finite T by induction
because

∣∣Mϕ(c)

∣∣ < |M |. (Giant-step)

B∗c is a (prefix) code (of delay 1) and every mapping
σ : B∗c→ T can be extended to a homomorphism
σ : (B∗c)+ = A∗c→ T+.

One can choose T and σ such that

ϕ(cwc) = ψσ(wc)

and then (hopefully) a miracle happens: P holds for ϕ.

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
ϕ : A∗ →M for finite monoids M ∈ V.

Base for the induction: prove P for finite groups G ∈ V.

If M is not a group choose a letter c ∈ A such that ϕ(c) ∈M
is not a unit. Define B = A \ {c}.
P holds for ϕ|B∗ : B∗ →M by induction because |B| < |A|.
(Baby-step)

P holds for ψ : T ∗ →Mϕ(c) for every finite T by induction
because

∣∣Mϕ(c)

∣∣ < |M |. (Giant-step)

B∗c is a (prefix) code (of delay 1) and every mapping
σ : B∗c→ T can be extended to a homomorphism
σ : (B∗c)+ = A∗c→ T+.

One can choose T and σ such that

ϕ(cwc) = ψσ(wc)

and then (hopefully) a miracle happens: P holds for ϕ.

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
ϕ : A∗ →M for finite monoids M ∈ V.

Base for the induction: prove P for finite groups G ∈ V.

If M is not a group choose a letter c ∈ A such that ϕ(c) ∈M
is not a unit. Define B = A \ {c}.
P holds for ϕ|B∗ : B∗ →M by induction because |B| < |A|.
(Baby-step)

P holds for ψ : T ∗ →Mϕ(c) for every finite T by induction
because

∣∣Mϕ(c)

∣∣ < |M |. (Giant-step)

B∗c is a (prefix) code (of delay 1) and every mapping
σ : B∗c→ T can be extended to a homomorphism
σ : (B∗c)+ = A∗c→ T+.

One can choose T and σ such that

ϕ(cwc) = ψσ(wc)

and then (hopefully) a miracle happens: P holds for ϕ.

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
ϕ : A∗ →M for finite monoids M ∈ V.

Base for the induction: prove P for finite groups G ∈ V.

If M is not a group choose a letter c ∈ A such that ϕ(c) ∈M
is not a unit. Define B = A \ {c}.
P holds for ϕ|B∗ : B∗ →M by induction because |B| < |A|.
(Baby-step)

P holds for ψ : T ∗ →Mϕ(c) for every finite T by induction
because

∣∣Mϕ(c)

∣∣ < |M |. (Giant-step)

B∗c is a (prefix) code (of delay 1) and every mapping
σ : B∗c→ T can be extended to a homomorphism
σ : (B∗c)+ = A∗c→ T+.

One can choose T and σ such that

ϕ(cwc) = ψσ(wc)

and then (hopefully) a miracle happens: P holds for ϕ.

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
ϕ : A∗ →M for finite monoids M ∈ V.

Base for the induction: prove P for finite groups G ∈ V.

If M is not a group choose a letter c ∈ A such that ϕ(c) ∈M
is not a unit. Define B = A \ {c}.
P holds for ϕ|B∗ : B∗ →M by induction because |B| < |A|.
(Baby-step)

P holds for ψ : T ∗ →Mϕ(c) for every finite T by induction
because

∣∣Mϕ(c)

∣∣ < |M |. (Giant-step)

B∗c is a (prefix) code (of delay 1) and every mapping
σ : B∗c→ T can be extended to a homomorphism
σ : (B∗c)+ = A∗c→ T+.

One can choose T and σ such that

ϕ(cwc) = ψσ(wc)

and then (hopefully) a miracle happens: P holds for ϕ.

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
ϕ : A∗ →M for finite monoids M ∈ V.

Base for the induction: prove P for finite groups G ∈ V.

If M is not a group choose a letter c ∈ A such that ϕ(c) ∈M
is not a unit. Define B = A \ {c}.
P holds for ϕ|B∗ : B∗ →M by induction because |B| < |A|.
(Baby-step)

P holds for ψ : T ∗ →Mϕ(c) for every finite T by induction
because

∣∣Mϕ(c)

∣∣ < |M |. (Giant-step)

B∗c is a (prefix) code (of delay 1) and every mapping
σ : B∗c→ T can be extended to a homomorphism
σ : (B∗c)+ = A∗c→ T+.

One can choose T and σ such that

ϕ(cwc) = ψσ(wc)

and then (hopefully) a miracle happens:

P holds for ϕ.

Baby-step-giant-step induction

Assume we wish to prove a property P for homomorphisms
ϕ : A∗ →M for finite monoids M ∈ V.

Base for the induction: prove P for finite groups G ∈ V.

If M is not a group choose a letter c ∈ A such that ϕ(c) ∈M
is not a unit. Define B = A \ {c}.
P holds for ϕ|B∗ : B∗ →M by induction because |B| < |A|.
(Baby-step)

P holds for ψ : T ∗ →Mϕ(c) for every finite T by induction
because

∣∣Mϕ(c)

∣∣ < |M |. (Giant-step)

B∗c is a (prefix) code (of delay 1) and every mapping
σ : B∗c→ T can be extended to a homomorphism
σ : (B∗c)+ = A∗c→ T+.

One can choose T and σ such that

ϕ(cwc) = ψσ(wc)

and then (hopefully) a miracle happens: P holds for ϕ.

Example for local divisor decomposition

M= {a, b}∗ × {δ, σ}∗ with a zero 0 modulo defining relations:
a2 = b2 = ab = ba = 0, aδ = a, δσ = σδ2, δ3 = 1, and σ2 = 1.
The subgroup generated by δ and σ is the symmetric group S3; it
is solvable but not abelian.

M

M [a, σ, δ]

S3 M [a, σ, δ]a ' Z/2Z

Mb ' S3 ∪ {0}

S3 (Mb)0 ' {1}

Applications of the local divisor technique

Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

“One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

SD(Aω) = AP(Aω).
D. and Kufleitner (2013)

New interpretation of Green’s Lemma: Schützenberger
categories. Costa and Steinberg (2014)

SDH(A∞) = H(A∞). D. and Walter (2016)

Applications of the local divisor technique

Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

“One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

SD(Aω) = AP(Aω).
D. and Kufleitner (2013)

New interpretation of Green’s Lemma: Schützenberger
categories. Costa and Steinberg (2014)

SDH(A∞) = H(A∞). D. and Walter (2016)

Applications of the local divisor technique

Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

“One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

SD(Aω) = AP(Aω).
D. and Kufleitner (2013)

New interpretation of Green’s Lemma: Schützenberger
categories. Costa and Steinberg (2014)

SDH(A∞) = H(A∞). D. and Walter (2016)

Applications of the local divisor technique

Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

“One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

SD(Aω) = AP(Aω).
D. and Kufleitner (2013)

New interpretation of Green’s Lemma: Schützenberger
categories. Costa and Steinberg (2014)

SDH(A∞) = H(A∞). D. and Walter (2016)

Applications of the local divisor technique

Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

“One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

SD(Aω) = AP(Aω).
D. and Kufleitner (2013)

New interpretation of Green’s Lemma: Schützenberger
categories. Costa and Steinberg (2014)

SDH(A∞) = H(A∞). D. and Walter (2016)

Applications of the local divisor technique

Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

“One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

SD(Aω) = AP(Aω).
D. and Kufleitner (2013)

New interpretation of Green’s Lemma: Schützenberger
categories. Costa and Steinberg (2014)

SDH(A∞) = H(A∞). D. and Walter (2016)

Applications of the local divisor technique

Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

“One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

SD(Aω) = AP(Aω).
D. and Kufleitner (2013)

New interpretation of Green’s Lemma: Schützenberger
categories. Costa and Steinberg (2014)

SDH(A∞) = H(A∞). D. and Walter (2016)

Applications of the local divisor technique

Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

“One-page-proof” for SF = AP for finite (and infinite) words.
Kufleitner (2010)

Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

SD(Aω) = AP(Aω).
D. and Kufleitner (2013)

New interpretation of Green’s Lemma: Schützenberger
categories. Costa and Steinberg (2014)

SDH(A∞) = H(A∞). D. and Walter (2016)

Main steps in showing H(A∗) ⊆ SDH(A
∗)

Starting point: ϕ : A∗ →M , all subgroups of M are divisors of
G ∈ H. Wlog. M is not a group. Choose c ∈ A such that ϕ(c) is
not a unit. We write [w] = ϕ−1(w) and T = {[u] | u ∈ B∗}
becomes a finite alphabet.

Let Mc =Mϕ(c) the local divisor at ϕ(c). Define

ψ : T ∗ →Mc, [u] 7→ ϕ(cuc).

Then

ψ([u1] · · · [un]) = ϕ(cu1c) ◦ · · · ◦ ϕ(cunc)
= ϕ(cu1c · · · cunc) = ϕ(c) · ϕ(u1c · · ·unc).

Define σ : (B∗c)∗ → T ∗ with σ(uc) = [u]. Then

∀w ∈ A∗ : ϕ(cwc) = ψσ(wc).

“Essentially” it remains to show

σ−1(SDG(T
∗)) ⊆ SDG(A

∗).

σ−1(SDG(T
∗)) ⊆ SDG(A

∗)

We have to show σ−1(K) ∈ SDG(A
∗) for all K ∈ SDG(T

∗). This
is done by structural induction.

The key observation is;

if K ∈ SDG(T
∗) be a prefix code of

synchronization delay d, then σ−1(K) is a prefix code of
synchronization delay d+ 1. (Exercise.)

σ−1(SDG(T
∗)) ⊆ SDG(A

∗)

We have to show σ−1(K) ∈ SDG(A
∗) for all K ∈ SDG(T

∗). This
is done by structural induction.

The key observation is; if K ∈ SDG(T
∗) be a prefix code of

synchronization delay d, then σ−1(K) is a prefix code of
synchronization delay d+ 1. (Exercise.)

Concluding remarks

The corresponding result for infinite words is more demanding.

For H = Solq we obtain via a result of Straubing, Thérien,
and Thomas the characterization:
(FO +MODq)[<](A

∞) = SDSolq(A
∞).

The monoid decomposition along proper submonoids and
local divisors leads a purely algebraic description using “local”
Rees extension. Answering thereby a recent question of
Almeida and Kĺıma about “bullet varieties”.

Straubing (1979) gave a description of the “star-free” closure
of a variety in terms of Mal’cev products. Is there a way to
use a characterization with prefix codes of bounded
synchronization delay?

MERCI à Marcel-Paul et au LaBRI

Concluding remarks

The corresponding result for infinite words is more demanding.

For H = Solq we obtain via a result of Straubing, Thérien,
and Thomas the characterization:
(FO +MODq)[<](A

∞) = SDSolq(A
∞).

The monoid decomposition along proper submonoids and
local divisors leads a purely algebraic description using “local”
Rees extension. Answering thereby a recent question of
Almeida and Kĺıma about “bullet varieties”.

Straubing (1979) gave a description of the “star-free” closure
of a variety in terms of Mal’cev products. Is there a way to
use a characterization with prefix codes of bounded
synchronization delay?

MERCI à Marcel-Paul et au LaBRI

Concluding remarks

The corresponding result for infinite words is more demanding.

For H = Solq we obtain via a result of Straubing, Thérien,
and Thomas the characterization:
(FO +MODq)[<](A

∞) = SDSolq(A
∞).

The monoid decomposition along proper submonoids and
local divisors leads a purely algebraic description using “local”
Rees extension. Answering thereby a recent question of
Almeida and Kĺıma about “bullet varieties”.

Straubing (1979) gave a description of the “star-free” closure
of a variety in terms of Mal’cev products. Is there a way to
use a characterization with prefix codes of bounded
synchronization delay?

MERCI à Marcel-Paul et au LaBRI

Concluding remarks

The corresponding result for infinite words is more demanding.

For H = Solq we obtain via a result of Straubing, Thérien,
and Thomas the characterization:
(FO +MODq)[<](A

∞) = SDSolq(A
∞).

The monoid decomposition along proper submonoids and
local divisors leads a purely algebraic description using “local”
Rees extension. Answering thereby a recent question of
Almeida and Kĺıma about “bullet varieties”.

Straubing (1979) gave a description of the “star-free” closure
of a variety in terms of Mal’cev products. Is there a way to
use a characterization with prefix codes of bounded
synchronization delay?

MERCI à Marcel-Paul et au LaBRI

Concluding remarks

The corresponding result for infinite words is more demanding.

For H = Solq we obtain via a result of Straubing, Thérien,
and Thomas the characterization:
(FO +MODq)[<](A

∞) = SDSolq(A
∞).

The monoid decomposition along proper submonoids and
local divisors leads a purely algebraic description using “local”
Rees extension. Answering thereby a recent question of
Almeida and Kĺıma about “bullet varieties”.

Straubing (1979) gave a description of the “star-free” closure
of a variety in terms of Mal’cev products. Is there a way to
use a characterization with prefix codes of bounded
synchronization delay?

MERCI

à Marcel-Paul et au LaBRI

Concluding remarks

The corresponding result for infinite words is more demanding.

For H = Solq we obtain via a result of Straubing, Thérien,
and Thomas the characterization:
(FO +MODq)[<](A

∞) = SDSolq(A
∞).

The monoid decomposition along proper submonoids and
local divisors leads a purely algebraic description using “local”
Rees extension. Answering thereby a recent question of
Almeida and Kĺıma about “bullet varieties”.

Straubing (1979) gave a description of the “star-free” closure
of a variety in terms of Mal’cev products. Is there a way to
use a characterization with prefix codes of bounded
synchronization delay?

MERCI à Marcel-Paul

et au LaBRI

Concluding remarks

The corresponding result for infinite words is more demanding.

For H = Solq we obtain via a result of Straubing, Thérien,
and Thomas the characterization:
(FO +MODq)[<](A

∞) = SDSolq(A
∞).

The monoid decomposition along proper submonoids and
local divisors leads a purely algebraic description using “local”
Rees extension. Answering thereby a recent question of
Almeida and Kĺıma about “bullet varieties”.

Straubing (1979) gave a description of the “star-free” closure
of a variety in terms of Mal’cev products. Is there a way to
use a characterization with prefix codes of bounded
synchronization delay?

MERCI à Marcel-Paul et au LaBRI

