On algorithmic aspects of infinite games played on weighted graphs

Véronique Bruyère
UMONS Belgium

MPS 2016
1. Topic

2. Qualitative two-player zero-sum games

3. Quantitative two-player zero-sum games

4. Multidimensional two-player zero-sum games

5. Multiplayer non zero-sum games

6. Conclusion
This talk

- Focus on algorithmic game theory for the synthesis of correct computer systems
This talk

- Focus on algorithmic game theory for the synthesis of correct computer systems
- Some classical results and recent UMONS results
This talk

- Focus on algorithmic game theory for the synthesis of correct computer systems
- Some classical results and recent UMONS results
Algorithmic game theory

Reactive system

- System embedded into an uncontrollable environment
- It must satisfy some property against any behavior of the environment
- How to automatically design a correct controller for the system?
Algorithmic game theory

Reactive system

- System embedded into an uncontrollable environment
- It must satisfy some property against any behavior of the environment
- How to automatically design a correct controller for the system?

Example

- System: airplane and environment: weather
- The airplane must land safely in any weather conditions
- How to design a correct autopilot?
Algorithmic game theory

Reactive system

- System embedded into an uncontrollable environment
- It must satisfy some property against any behavior of the environment
- How to automatically design a correct controller for the system?

Modelization

- Two-player zero-sum game played on a finite directed graph
- Property = objective for the system
- Synthesis of a controller = construction of a winning strategy
1 Topic

2 Qualitative two-player zero-sum games

3 Quantitative two-player zero-sum games

4 Multidimensional two-player zero-sum games

5 Multiplayer non zero-sum games

6 Conclusion
Basic model

Definition

Two-player zero-sum game $G = (V, V_1, V_2, E, v_0)$:

- (V, E) finite directed graph (with no deadlock)
- (V_1, V_2) partition of V
- V_p controlled by player $p \in \{1, 2\}$
- Initial vertex v_0

Paths

Play: infinite path from $v_0 = \rho_0 \rho_1 \ldots \in V^\omega$ in G

History: prefix h of a play

Unravelling of G: infinite tree of all paths from v_0
Basic model

Definition

Two-player zero-sum game $G = (V, V_1, V_2, E, v_0)$:
- (V, E) finite directed graph (with no deadlock)
- (V_1, V_2) partition of V with V_p controlled by player $p \in \{1, 2\}$
- initial vertex v_0

Paths

- **Play**: infinite path from v_0
 $\rho = \rho_0\rho_1\ldots \in V^\omega$ in G
- **History**: prefix h of a play
- **Unravelling** of G: infinite tree of all paths from v_0
Basic model

Objective: set $\Omega \subseteq V^\omega$ of plays

Zero-sum game:
- objective Ω for player 1
- opposite objective $V^\omega \setminus \Omega$ for player 2
Basic model

Objective: set $\Omega \subseteq V^\omega$ of plays

Zero-sum game:
- objective Ω for player 1
- opposite objective $V^\omega \setminus \Omega$ for player 2

Definition

Given a set $U \subseteq V$, classical qualitative objectives are:
- Reachability objective: visit a vertex of U at least once
- Büchi objective: visit a vertex of U infinitely often
Basic model

Objective: set $\Omega \subseteq V^\omega$ of plays

Zero-sum game:

- objective Ω for player 1
- opposite objective $V^\omega \setminus \Omega$ for player 2

Definition

Given a set $U \subseteq V$, classical qualitative objectives are:

- **Reachability** objective: visit a vertex of U at least once
- **Büchi** objective: visit a vertex of U infinitely often

Given a coloring $c : V \rightarrow \{0, 1, \ldots, C\}$

- **Parity** objective: the maximum color seen infinitely often is even
Strategies

Strategy for player p:
function $\sigma : V^* V_p \rightarrow V$ such that
$\sigma(hv) = v'$ with $(v, v') \in E$
Strategies

Strategy for player p:
function $\sigma : V^* V_p \rightarrow V$ such that $\sigma(hv) = v'$ with $(v, v') \in E$

Memoryless: when $\sigma(hv) = \sigma(v)$
Strategies

Strategy for player p:
function $\sigma : V \times V_p \rightarrow V$ such that $\sigma(hv) = v'$ with $(v, v') \in E$

Memoryless: when $\sigma(hv) = \sigma(v)$

Finite-memory: when σ is recorded by a finite automaton
Strategies

Winning strategy for player p: ensure his objective against any strategy of the other player

A game is determined from initial vertex v_0 when

- either player 1 is winning for Ω from v_0
- or player 2 is winning for $V^\omega \setminus \Omega$ from v_0
Strategies

Winning strategy for player p: ensure his objective against any strategy of the other player

A game is **determined** from initial vertex v_0 when

- either player 1 is winning for Ω from v_0
- or player 2 is winning for $V^{\omega} \setminus \Omega$ from v_0

Example

- Objective of player 1: visit v_3
- Player 1 is (trivially) winning from v_3
- Player 2 is winning from v_0, v_1, and v_2

Memoryless strategy: looping on v_2
Strategies

Winning strategy for player p: ensure his objective against any strategy of the other player

A game is determined from initial vertex v_0 when

- either player 1 is winning for Ω from v_0
- or player 2 is winning for $V^\omega \setminus \Omega$ from v_0

Another example

Parity game: Player 1 is winning from every vertex with a memoryless strategy

- Either player 2 eventually stays at v_2 \rightarrow max color seen infinitely often $= 0$
- Or he infinitely often visits v_3 \rightarrow max color seen infinitely often $= 2$
Martin’s theorem

Theorem [Mar75]

Every game with Borel objectives is determined
Martin’s theorem

Theorem [Mar75]
Every game with Borel objectives is determined

- Need of the axiom of choice to exhibit a non-determined game
- No information about the winning strategies
Martin’s theorem

Theorem [Mar75]

Every game with Borel objectives is determined

- Need of the **axiom of choice** to exhibit a non-determined game
- **No** information about the winning strategies

Corollary

Every game with \(\omega \)-regular objectives is determined
Martin’s theorem

Theorem [Mar75]

Every game with **Borel** objectives is determined

- Need of the **axiom of choice** to exhibit a non-determined game
- **No** information about the winning strategies

Corollary

Every game with **ω-regular** objectives is determined

Algorithmic questions

- **Who** is the winner from initial vertex v_0?
- **Complexity** class of this decision problem?
- **Can we construct** a winning strategy for the winner?
- **What kind** of winning strategy? Memoryless, finite-memory?
Algorithmic results for one-player games

Classical question in automata theory: **Player 1 wins** iff there exists a play satisfying the objective

- **Reachability** objective: emptiness of automata on finite words
- **Büchi** objective: emptiness of automata on infinite words
Algorithmic results for one-player games

Classical question in automata theory: Player 1 wins iff there exists a play satisfying the objective

- Reachability objective: emptiness of automata on finite words
- Büchi objective: emptiness of automata on infinite words

Finite-memory winning strategy iff the winning play is eventually periodic
Algorithmic results for one-player games

Classical question in automata theory: Player 1 wins iff there exists a play satisfying the objective

- **Reachability** objective: emptiness of automata on finite words
- **Büchi** objective: emptiness of automata on infinite words

Finite-memory winning strategy iff the winning play is eventually periodic

- reachable cycle in the graph
- reachable simple cycle for memoryless strategies
Algorithmic results for one-player games

Classical question in automata theory: Player 1 wins iff there exists a play satisfying the objective

- Reachability objective: emptiness of automata on finite words
- Büchi objective: emptiness of automata on infinite words

Finite-memory winning strategy iff the winning play is eventually periodic

- reachable cycle in the graph
- reachable simple cycle for memoryless strategies

Remark: Given a two-player game G, by fixing a strategy σ for player p, we get a one-player (infinite/finite) game G_σ
Algorithmic results for two-player games

[Bee80, Imm81, EJ91], see also [Zie98, GTW02]

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Reach</th>
<th>Büchi</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1 strategy</td>
<td></td>
<td></td>
<td>memoryless</td>
</tr>
<tr>
<td>Player 2 strategy</td>
<td></td>
<td></td>
<td>memoryless</td>
</tr>
</tbody>
</table>
Algorithmic results for two-player games

[Bee80, Imm81, EJ91], see also [Zie98, GTW02]

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Reach</th>
<th>Büchi</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1 strategy</td>
<td>memoryless</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Player 2 strategy</td>
<td>memoryless</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Remember the previous examples
- More information on the proofs in the next slides
Algorithmic results for two-player games

[Bee80, Imm81, EJ91], see also [Zie98, GTW02]

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Reach</th>
<th>Büchi</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>P-complete</td>
<td>NP \cap co-NP</td>
<td></td>
</tr>
<tr>
<td>Player 1 strategy</td>
<td>memoryless</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Player 2 strategy</td>
<td>memoryless</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Remember the previous examples
- More information on the proofs in the next slides

Major open problem: can we solve Parity games in P?
1 Topic

2 Qualitative two-player zero-sum games

3 Quantitative two-player zero-sum games

4 Multidimensional two-player zero-sum games

5 Multiplayer non zero-sum games

6 Conclusion
Basic model

Extension with **weights** on the edges

Definition

Two-player zero-sum game $G = (V, V_1, V_2, E, v_0, w)$ as before, with:

- $w : E \rightarrow \mathbb{Z}$ weight function
Basic model

Extension with weights on the edges

Definition

Two-player zero-sum game $G = (V, V_1, V_2, E, v_0, w)$ as before, with:

- $w : E \to \mathbb{Z}$ weight function

Classical payoff $f(\rho)$ of a play $\rho = \rho_0\rho_1\rho_2 \ldots$:

- $\text{Inf}(\rho) = \inf_{n \in \mathbb{N}} w(\rho_n, \rho_{n+1})$
- $\text{LimInf}(\rho) = \lim \inf_{n \to \infty} w(\rho_n, \rho_{n+1})$
- Total-payoff $\text{TP}(\rho) = \lim \inf_{n \to \infty} \sum_{k=0}^{n-1} w(\rho_k, \rho_{k+1})$
- Mean-payoff $\text{MP}(\rho) = \lim \inf_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} w(\rho_k, \rho_{k+1})$
Basic model

Extension with weights on the edges

Definition

Two-player zero-sum game $G = (V, V_1, V_2, E, v_0, w)$ as before, with:
- $w : E \rightarrow \mathbb{Z}$ weight function

Classical payoff $f(\rho)$ of a play $\rho = \rho_0\rho_1\rho_2 \ldots$:
- $\text{Inf}(\rho) = \inf_{n \in \mathbb{N}} w(\rho_n, \rho_{n+1})$
- $\text{LimInf}(\rho) = \lim_{n \to \infty} \inf w(\rho_n, \rho_{n+1})$
- Total-payoff $\overline{\text{TP}}(\rho) = \lim_{n \to \infty} \sum_{k=0}^{n-1} w(\rho_k, \rho_{k+1})$
- Mean-payoff $\overline{\text{MP}}(\rho) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} w(\rho_k, \rho_{k+1})$

Similar definitions with $\text{Sup}(\rho), \text{LimSup}(\rho), \overline{\text{TP}}(\rho), \overline{\text{MP}}(\rho)$
Quantitative objectives

Example

\[\text{play } \rho = (v_0 v_1)^\omega \]

\[\text{TP}(\rho) = \lim \inf_{n \to \infty} \sum_{k=0}^{n-1} w(\rho_k, \rho_{k+1}) \]
\[(-1, -1, -2, -2, -3, -3, \ldots, -n, -n, \ldots) \to -\infty = \text{TP}(\rho) = \overline{\text{TP}}(\rho) \]

\[\text{MP}(\rho) = \lim \inf_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} w(\rho_k, \rho_{k+1}) \]
\[(-\frac{1}{1}, -\frac{1}{2}, -\frac{2}{3}, -\frac{2}{4}, -\frac{3}{5}, -\frac{3}{6}, \ldots, -\frac{n}{2n-1}, -\frac{n}{2n}, \ldots) \to -\frac{1}{2} = \text{MP}(\rho) = \overline{\text{MP}}(\rho) \]
Quantitative objectives

Example

\[\text{play } \rho = (v_0 v_1)^\omega\]

- \[\text{TP}(\rho) = \lim\inf_{n \to \infty} \sum_{k=0}^{n-1} w(\rho_k, \rho_{k+1})\]
 \((-1, -1, -2, -2, -3, -3, \ldots, -n, -n, \ldots) \to -\infty = \text{TP}(\rho) = \overline{\text{TP}}(\rho)\]

- \[\text{MP}(\rho) = \lim\inf_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} w(\rho_k, \rho_{k+1})\]
 \((-\frac{1}{1}, -\frac{1}{2}, -\frac{2}{3}, -\frac{2}{4}, -\frac{3}{5}, \ldots, -\frac{n}{2n-1}, -\frac{n}{2n}, \ldots) \to -\frac{1}{2} = \text{MP}(\rho) = \overline{\text{MP}}(\rho)\]

Lemma: If eventually periodic \(\rho = hg^\omega \), then \(\text{MP}(\rho) = \overline{\text{MP}}(\rho) = \) mean payoff of the cycle \(g \)
Quantitative objectives

Definition

Classical quantitative objectives are, given a threshold $\nu \in \mathbb{Q}$:

- **Inf** objective: ensure $\text{Inf}(\rho) \geq \nu$
- Similarly for the other payoff functions **LimInf**, **TP**, ...
Quantitative objectives

Definition

Classical quantitative objectives are, given a threshold \(\nu \in \mathbb{Q} \):

- \(\text{Inf} \) objective: ensure \(\text{Inf}(\rho) \geq \nu \)
- Similarly for the other payoff functions \(\text{LimInf} \), \(\text{TP} \), ...

- Player 1 wants to maximize the payoff (interest in the highest \(\nu \))
- Player 2 wants to minimize the payoff
Quantitative objectives

Definition

Classical quantitative objectives are, given a threshold \(\nu \in \mathbb{Q} \):

- \(\text{Inf} \) objective: ensure \(\text{Inf}(\rho) \geq \nu \)
- Similarly for the other payoff functions \(\text{LimInf}, \text{TP}, \ldots \)

- Player 1 wants to maximize the payoff (interest in the highest \(\nu \))
- Player 2 wants to minimize the payoff

Corollary of Martin’s Theorem

Games with such quantitative objectives are determined

- \(\text{Inf}, \text{LimInf} \): \(\omega \)-regular
- \(\text{TP}, \text{MP} \): not \(\omega \)-regular, but Borel
Algorithmic results for two-player games

[EM79, ZP96, BSV04]

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Reach</th>
<th>Büchi</th>
<th>Parity</th>
<th>TP, TP</th>
<th>MP, MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>P-complete</td>
<td></td>
<td>NP \cap co-NP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Player 1 strategy</td>
<td>memoryless</td>
<td></td>
<td>memoryless</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Player 2 strategy</td>
<td>memoryless</td>
<td></td>
<td>memoryless</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Algorithmic results for two-player games

[EM79, ZP96, BSV04]

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Reach</th>
<th>Büchi</th>
<th>Parity</th>
<th>MP, MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>P-complete</td>
<td></td>
<td>NP \cap co-NP</td>
<td></td>
</tr>
<tr>
<td>Player 1 strategy</td>
<td></td>
<td></td>
<td>memoryless</td>
<td></td>
</tr>
<tr>
<td>Player 2 strategy</td>
<td></td>
<td></td>
<td>memoryless</td>
<td></td>
</tr>
</tbody>
</table>

Reductions:
- Parity games \rightarrow Mean-payoff games [Jur98]
- Total-payoff games \leftrightarrow Mean-payoff games

Major open problem: can we solve Parity, Mean-payoff and Total-payoff games in P?
Algorithmic results

Theorem [GZ04]

Let G be a weighted game. If the payoff function f is fairly mixing, i.e.:

1. $f(\rho) \leq f(\rho') \Rightarrow f(h\rho) \leq f(h\rho')$
2. $\min\{f(\rho), f(h^\omega)\} \leq f(h\rho) \leq \max\{f(\rho), f(h^\omega)\}$
3. $\min\{f(h_0 h_2 h_4 \ldots), f(h_1 h_3 h_5 \ldots), \inf_i f(h_i^\omega)\} \leq f(h_0 h_1 h_2 h_3 \ldots) \leq \max\{f(h_0 h_2 h_4 \ldots), f(h_1 h_3 h_5 \ldots), \sup_i f(h_i^\omega)\}$

then both players have memoryless (optimal) winning strategies.
Algorithmic results

Theorem [GZ04]

Let G be a weighted game. If the payoff function f is fairly mixing, i.e.:

1. $f(\rho) \leq f(\rho') \Rightarrow f(h\rho) \leq f(h\rho')$
2. $\min\{f(\rho), f(h^\omega)\} \leq f(h\rho) \leq \max\{f(\rho), f(h^\omega)\}$
3. $\min\{f(h_0h_2h_4\ldots), f(h_1h_3h_5\ldots), \inf_i f(h_i^\omega)\}$
 \[\leq f(h_0h_1h_2h_3\ldots) \leq \max\{f(h_0h_2h_4\ldots), f(h_1h_3h_5\ldots), \sup_i f(h_i^\omega)\} \]

then both players have **memoryless** (optimal) winning strategies

- **Many applications**: Parity, Inf, LimInf, Mean-payoff, Total-payoff, ...
- If the payoff function is prefix-independent, i.e. $f(\rho) = f(h\rho)$, then conditions 1. and 2. are satisfied
- **Simple proof** by induction on the number of edges
Algorithmic results

Parity games in $\text{NP} \cap \text{co-NP}$
Algorithmic results

Parity games in $\text{NP} \cap \text{co-NP}$

- in NP:
 - **Guess** a memoryless winning strategy σ player 1
 - In the one-player game G_σ, check in polynomial time whether there exists a reachable cycle with odd maximum color
Algorithmic results

Parity games in $\mathsf{NP} \cap \mathsf{co-NP}$

- **in NP:**
 - Guess a memoryless winning strategy σ player 1
 - In the one-player game G_{σ}, check in polynomial time whether there exists a reachable cycle with odd maximum color

- **in co-NP:** symmetrically for player 2
Algorithmic results

Parity games in $NP \cap co-NP$

- in NP:
 - Guess a memoryless winning strategy σ player 1
 - In the one-player game G_σ, check in polynomial time whether there exists a reachable cycle with odd maximum color

- in $co-NP$: symmetrically for player 2

Mean-payoff games in $NP \cap co-NP$

- Same approach
 - One can compute in polynomial time the minimum (resp. maximum) mean weight cycle in a weighted graph [Kar78]
Algorithmic results

Parity games in NP \(\cap \) co-NP

- **in NP:**
 - **Guess** a memoryless winning strategy \(\sigma \) player 1
 - In the one-player game \(G_\sigma \), check in polynomial time whether there exists a reachable cycle with odd maximum color

- **in co-NP:** symmetrically for player 2

Mean-payoff games in NP \(\cap \) co-NP

- Same approach

- One can compute in polynomial time the minimum (resp. maximum) mean weight cycle in a weighted graph [Kar78]
Window games

Objective to satisfy inside a finite window sliding along the play [CHH09], [CDRR15, BHRR16]

Definition

Given a window size λ and a threshold ν,

- WMP objective: ensure for all positions i of the window,

$$\frac{1}{\ell} \sum_{k=0}^{\ell-1} w(\rho_{i+k}, \rho_{i+k+1}) \geq \nu$$

for some $\ell \leq \lambda$
Window games

Objective to satisfy inside a finite window sliding along the play [CHH09], [CDRR15, BHRR16]

Definition

Given a window size \(\lambda \) and a threshold \(\nu \)

- **WMP** objective: ensure for all positions \(i \) of the window,
 \[
 \frac{1}{\ell} \sum_{k=0}^{\ell-1} w(\rho_{i+k}, \rho_{i+k+1}) \geq \nu \text{ for some } \ell \leq \lambda
 \]

Given a window size \(\lambda \) and a coloring \(c \)

- **WParity** objective: ensure for all positions \(i \) of the window,
 \[
 \max_{0 \leq k \leq \ell} c(\rho_{i+k}) \text{ even for some } \ell \leq \lambda
 \]
Window games

Motivations

- **Strengthening** of the Mean-payoff and Parity objectives
 - Guarantee within a bounded time, not in the limit
- More **computationally** tractable
 - (Open problem: Mean-payoff and Parity games are in P?)
Window games

Motivations

- **Strengthening** of the Mean-payoff and Parity objectives
 - Guarantee within a bounded time, not in the limit
- More **computationally** tractable
 - (Open problem: Mean-payoff and Parity games are in P?)

Remark: ω-regular objectives, thus determined games
Window games

Motivations

- **Strengthening** of the Mean-payoff and Parity objectives
 - Guarantee within a bounded time, not in the limit
- More **computationally** tractable
 (Open problem: Mean-payoff and Parity games are in P?)

Remark: ω-regular objectives, thus determined games

Example

- Player 1 winning for Parity
- but loosing for WParity for all window sizes λ
Window games

Results

<table>
<thead>
<tr>
<th></th>
<th>MP, MP</th>
<th>Parity</th>
<th>WMP</th>
<th>WParity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>NP ∩ co-NP</td>
<td>P-complete polynomial windows</td>
<td>P-complete</td>
<td></td>
</tr>
<tr>
<td>Player 1 strategy</td>
<td>memoryless</td>
<td>finite-memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Player 2 strategy</td>
<td>memoryless</td>
<td>finite-memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>2-player games</td>
<td>Quantitative 2-player games</td>
<td>(k)-dim 2-player games</td>
<td>Multiplayer games</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>Topic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Qualitative two-player zero-sum games</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Quantitative two-player zero-sum games</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Multidimensional two-player zero-sum games</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Multiplayer non zero-sum games</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Model

Extension to \textit{k-dimensional} weighted games with \(k \geq 2\)

Definition

Two-player zero-sum game \(G = (V, V_1, V_2, E, v_0, w)\) as before except:

\(w : E \rightarrow \mathbb{Z}^k\) weight function
Model

Extension to \(k \)-dimensional weighted games with \(k \geq 2 \)

Definition

Two-player zero-sum game \(G = (V, V_1, V_2, E, v_0, w) \) as before except:

- \(w : E \rightarrow \mathbb{Z}^k \) weight function

Definition

Quantitative objective \(\Omega \):

- Intersection \(\bigcap_{\ell=1}^{k} \Omega_\ell \) such that \(\Omega_\ell \) is an objective for dimension \(\ell \)
- More generally, Boolean combination of such objectives \(\Omega_\ell \), \(1 \leq \ell \leq k \)
Example

- One-player game
- \(k = 2, \Omega = \Omega_1 \cap \Omega_2 \)
 with \(\Omega_1 = \text{MP}(\rho) \geq 1 \) for dimension 1
 and \(\Omega_2 = \text{MP}(\rho) \geq 1 \) for dimension 2
Example

- One-player game
- $k = 2$, $\Omega = \Omega_1 \cap \Omega_2$
 with $\Omega_1 = \text{MP}(\rho) \geq 1$ for dimension 1
 and $\Omega_2 = \text{MP}(\rho) \geq 1$ for dimension 2

- Player 1 is **losing** with **finite-memory** strategies
 - Eventually periodic play $\rho = h g^\omega$
 - Mean-payoff of cycle g equal to
 \[
 a \cdot (2, 0) + b \cdot (0, 0) + c \cdot (0, 2) = (2 \cdot a, 2 \cdot c) \not\geq (1, 1)
 \]
 with $a + b + c = 1$ and $b > 0$
Example

- One-player game
- $k = 2$, $\Omega = \Omega_1 \cap \Omega_2$
 with $\Omega_1 = \overline{\text{MP}}(\rho) \geq 1$ for dimension 1
 and $\Omega_2 = \overline{\text{MP}}(\rho) \geq 1$ for dimension 2

- Player 1 is **losing** with **finite-memory** strategies
 - Eventually periodic play $\rho = h g^\omega$
 - Mean-payoff of cycle g equal to
 $$a \cdot (2, 0) + b \cdot (0, 0) + c \cdot (0, 2) = (2 \cdot a, 2 \cdot c) \ngeq (1, 1)$$
 with $a + b + c = 1$ and $b > 0$

- Player 1 is **winning** with **infinite-memory** strategies
 - Alternate visits to v_0 and v_1
 - At alternation n, loop n times on v_0 and then loop n times on v_1
 $$a_n \cdot (2, 0) + \epsilon_n \cdot (0, 0) + a_n \cdot (0, 2)$$
 with $\epsilon_n \to 0$ and $a_n \to \frac{1}{2}$
 - Mean-payoff equal to $(1, 1)$
Results with the same objective on all dimensions

[CDHR10], [CRR14, CDERR15]

<table>
<thead>
<tr>
<th>Complexity</th>
<th>TP, TP</th>
<th>MP</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1 strategy</td>
<td>Undecidable</td>
<td>(\text{NP} \cap \text{co-NP})</td>
<td>(\text{coNP-complete})</td>
</tr>
<tr>
<td>Player 2 strategy</td>
<td>infinite-memory</td>
<td>memoryless</td>
<td></td>
</tr>
</tbody>
</table>
Results with the same objective on all dimensions

[CDHR10], [CRR14, CDRR15]

<table>
<thead>
<tr>
<th></th>
<th>TP, TP</th>
<th>MP</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>Undecidable</td>
<td>NP \cap co-NP</td>
<td>coNP-complete</td>
</tr>
<tr>
<td>Player 1 strategy</td>
<td>-</td>
<td>infinite-memory</td>
<td></td>
</tr>
<tr>
<td>Player 2 strategy</td>
<td>-</td>
<td>memoryless</td>
<td></td>
</tr>
</tbody>
</table>

[CDRR15, BHRR16]

<table>
<thead>
<tr>
<th></th>
<th>WMP</th>
<th>WParity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>Exptime-complete</td>
<td></td>
</tr>
<tr>
<td>Player 1 strategy</td>
<td>finite-memory</td>
<td></td>
</tr>
<tr>
<td>Player 2 strategy</td>
<td>finite-memory</td>
<td></td>
</tr>
</tbody>
</table>
Results with heterogeneous objectives

Only preliminary results

Theorem

- [Vel15]: Undecidability for Boolean combinations of MP and $\overline{\text{MP}}$ objectives
- [BHR15]: Decidability for Boolean combinations of WMP, Inf, Sup, LimInf, LimSup objectives, and finite-memory winning strategies for both players
<table>
<thead>
<tr>
<th>Topic</th>
<th>2-player games</th>
<th>Quantitative 2-player games</th>
<th>k-dim 2-player games</th>
<th>Multiplayer games</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Topic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Qualitative two-player zero-sum games</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Quantitative two-player zero-sum games</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Multidimensional two-player zero-sum games</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Multiplayer non zero-sum games</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Model

Summary

- 2-player zero-sum games, one player against the other
- Qualitative/quantitative uni/multidimensional objectives
Model

Summary

- 2-player zero-sum games, one player against the other
- Qualitative/quantitative uni/multidimensional objectives

Multiplier non zero-sum games

- Several players with their own objective
- Non necessarily antagonistic objectives
Model

Summary

- 2-player zero-sum games, one player against the other
- Qualitative/quantitative uni/multidimensional objectives

Multiplayer non zero-sum games

- Several players with their own objective
- Non necessarily antagonistic objectives

Definition

\[n \text{-player non zero-sum game } G = (V, (V_p)_{p \in \Pi}, E, v_0, \bar{w}): \]

- Set \(\Pi \) of \(n \) players, \(n \geq 1 \)
- \((V_p)_{p \in \Pi} \) partition of \(V \) with \(V_p \) controlled by player \(p \in \Pi \)
- optional: \(\bar{w} = (w_p)_{p \in \Pi} : E \to \mathbb{Z}^n \) such that
 - \(w_p \) is the weight function of player \(p \)
 - leading to his payoff function \(f_p \)
Model

Definition

Objective Ω_p for each player $p \in \Pi$
- qualitative
- quantitative (depending on f_p)

Strategy profile $\bar{\sigma} = (\sigma_p)_{p \in \Pi}$ and outcome $\rho = \langle \bar{\sigma} \rangle_{v_0}$ from initial vertex v_0.

Model

Definition

Objective Ω_p for each player $p \in \Pi$
- qualitative
- quantitative (depending on f_p)

Strategy profile $\bar{\sigma} = (\sigma_p)_{p \in \Pi}$ and outcome $\rho = \langle \bar{\sigma} \rangle_{v_0}$ from initial vertex v_0.

Example
- 3-player game (player 1 ⃝, player 2 □, player 3 ♦)
- Each player wants to visit one of his vertices infinitely often
- Outcome $(v_0 v_1 v_2 v_1)^\omega$: good solution for each player that needs cooperation
Nash equilibria (NE)

Classical notion such that each player is
- rational (he wants to maximize his payoff)
- selfish (he is only concerned with his own payoff)
Nash equilibria (NE)

Classical notion such that each player is

- rational (he wants to maximize his payoff)
- selfish (he is only concerned with his own payoff)

Informally, \(\bar{\sigma} \) is an NE if no player has an incentive to deviate from his strategy, if the other players stick to their own strategies.

Definition [Nas50]

The strategy profile \(\bar{\sigma} \) is a Nash equilibrium from \(v_0 \) if, for each player \(p \in \Pi \), for each strategy \(\sigma'_p \) of \(p \),

\[
 f_p(\langle \sigma'_p, \bar{\sigma}_{-p} \rangle_{v_0}) \leq f_p(\langle \bar{\sigma} \rangle_{v_0}).
\]

Notation: \(\bar{\sigma}_{-p} = (\sigma_i)_{i \in \Pi \setminus \{p\}} \).
Nash equilibria

Example of NE: outcome $v_0 v_2 v_4^\omega$ with payoff $(3, 2)$

No incentive to deviate:

- If player 1 deviates to v_1, he will get 1 instead of 3
- If player 2 deviates to v_3, he will get 1 instead of 2
Nash equilibria

Example of NE: outcome $v_0 v_2 v_4^\omega$ with payoff $(3, 2)$

No incentive to deviate:
- If player 1 deviates to v_1, he will get 1 instead of 3
- If player 2 deviates to v_3, he will get 1 instead of 2

Algorithmic questions

- Does there exist an NE from initial vertex v_0?
- Can we construct it?
- With what kind of strategies? Memoryless, finite-memory?
Some results

Theorem

Qualitative objectives

- [GU08]: Existence of an NE in case of Borel objectives
Some results

Theorem

Qualitative objectives

- [GU08]: Existence of an NE in case of Borel objectives

Quantitative objectives

- [Kuh53]: Construction of an NE for games played on a finite tree
- [FL83, Har85]: Existence of an NE if the payoff function f_p of each player p is bounded and continuous
Some results

Theorem

Qualitative objectives
- [GU08]: Existence of an NE in case of Borel objectives

Quantitative objectives
- [Kuh53]: Construction of an NE for games played on a finite tree
- [FL83, Har85]: Existence of an NE if the payoff function f_p of each player p is bounded and continuous

Proof of [Kuh53]: Backward induction from the leaves to the root
Some results

Theorem

Qualitative objectives
- [GU08]: Existence of an NE in case of **Borel objectives**

Quantitative objectives
- [Kuh53]: **Construction** of an NE for games played on a **finite tree**
- [FL83, Har85]: Existence of an NE if the payoff function f_p of each player p is **bounded and continuous**

Proof of [FL83, Har85]:

- **On the unravelling of the game G truncated at depth d, construction of an NE $\bar{\sigma}^d$ by [Kuh53]**
- **A subsequence of $(\bar{\sigma}^d)_{d \in \mathbb{N}}$ converges to a strategy profile $\bar{\sigma}^*$ that is proved to be an NE**
Some results

Theorem

Qualitative objectives
- [GU08]: Existence of an NE in case of Borel objectives

Quantitative objectives
- [Kuh53]: Construction of an NE for games played on a finite tree
- [FL83, Har85]: Existence of an NE if the payoff function f_p of each player p is **bounded** and **continuous**

Remark: The LimInf, LimSup and MP payoff functions are not continuous

For example, $\rho^n = v_0^n v_1^\omega \rightarrow \rho = v_0^\omega$ and

$$\lim_{n \rightarrow \infty} \text{LimInf}(\rho^n) = 1 \neq 0 = \text{LimInf}(\rho)$$
Some results

Theorem [BDS13]

Construction of a finite-memory NE in the game G if for all p

- the payoff function f_p satisfies: $f_p(\rho) \leq f_p(\rho') \Rightarrow f_p(h\rho) \leq f_p(h\rho')$
- the two-player zero-sum game G^p
 - where player 1 is p and player 2 is the coalition of the other players
 - is determined with memoryless optimal winning strategies for both players
Some results

Theorem [BDS13]

Construction of a finite-memory NE in the game G if for all p

- the payoff function f_p satisfies: $f_p(\rho) \leq f_p(\rho') \Rightarrow f_p(h\rho) \leq f_p(h\rho')$
- the **two-player zero-sum** game G^p
 - where player 1 is p and player 2 is the **coalition** of the other players
 - is determined with **memoryless** optimal winning strategies for both players

Proof:

- Let σ_p (resp. σ_{-p}) be an optimal winning strategy of player p (resp. the coalition) in G^p
- Construct the profile $\bar{\sigma}$:
 - play as σ_p for each player p
 - (p plays selfishly and optimally for his own objective)
 - and as soon as some player p deviates, punish p by playing σ_{-p}
 - (the coalition plays against p’s objective)
Other kinds of equilibria

Subgame perfect equilibrium (SPE) [Sel65]

- takes into account the sequential nature of games played on graphs
- i.e., is an NE from the initial vertex v_0, but also after every history h of the game
Other kinds of equilibria

Subgame perfect equilibrium (SPE) [Sel65]

- takes into account the sequential nature of games played on graphs
- i.e., is an NE from the initial vertex v_0, but also after every history h of the game

Theorem

- Previous results [Kuh53] and [FL83, Har85] provide NE and more generally SPE
Other kinds of equilibria

Subgame perfect equilibrium (SPE) [Sel65]
- takes into account the sequential nature of games played on graphs
- i.e., is an NE from the initial vertex v_0, but also after every history h of the game

Theorem
- Previous results [Kuh53] and [FL83, Har85] provide NE and more generally SPE
- [BBMR15]: Construction of a finite-memory SPE for quantitative reachability games
Other kinds of equilibria

Secure equilibrium (SE) [CHJ06]

- each player wants to maximize his payoff, as a *first* objective
- and then minimize the payoff of the other players, as a *second* objective
Other kinds of equilibria

Secure equilibrium (SE) [CHJ06]

- each player wants to maximize his payoff, as a first objective
- and then minimize the payoff of the other players, as a second objective

Theorem

- [CHJ06]: Existence of an SE for 2-player games with Borel qualitative objectives
- [DFK+14]: Existence of an SE
 - if the payoff function f_p of each player p is bounded and continuous
 - or if each f_p is Borel measurable and have finite range
- [BMR14]: Previous result [BDS13] extended to SE for 2-player games
1. Topic

2. Qualitative two-player zero-sum games

3. Quantitative two-player zero-sum games

4. Multidimensional two-player zero-sum games

5. Multiplayer non zero-sum games

6. Conclusion
Summary

- 2-player zero-sum games, one player against the other
- Qualitative/quantitative uni/multidimensional objective
- Extension to multiplayer non zero-sum games
- Different notions of equilibria (NE, SPE, SE)
Summary

- 2-player zero-sum games, one player against the other
- Qualitative/quantitative uni/multidimensional objective
- Extension to multiplayer non zero-sum games
- Different notions of equilibria (NE, SPE, SE)

Need for further research on

- 2-player zero-sum games with heterogeneous objectives for the synthesis of correct reactive systems
- Adequate notions of equilibrium on multiplayer non zero-sum games for the synthesis of correct complex systems
Summary

- 2-player zero-sum games, one player against the other
- Qualitative/quantitative uni/multidimensional objective
- Extension to multiplayer non zero-sum games
- Different notions of equilibria (NE, SPE, SE)

Need for further research on

- 2-player zero-sum games with heterogeneous objectives for the synthesis of correct reactive systems
- Adequate notions of equilibrium on multiplayer non zero-sum games for the synthesis of correct complex systems

Other extensions

- Concurrent games
- Stochastic games
- Imperfect information
Summary

- 2-player zero-sum games, one player against the other
- Qualitative/quantitative uni/multidimensional objective
- Extension to multiplayer non zero-sum games
- Different notions of equilibria (NE, SPE, SE)

Need for further research on

- 2-player zero-sum games with heterogeneous objectives for the synthesis of correct reactive systems
- Adequate notions of equilibrium on multiplayer non zero-sum games for the synthesis of correct complex systems

Other extensions

- Concurrent games
- Stochastic games
- Imperfect information

Thank you!

